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ABSTRACT 

 

            The levels of Electromagnetic Interference (EMI) generated by two standard 
models of Uninterruptible Power Supplies (UPS) were examined.  Conducted current 
measurements were made on all conductors exiting and entering two standard UPS units 
between the frequency range of 60-Hz up to 50 MHz.  EMI reduction actions were 
undertaken on both units, and the reduction in EMI current resulting from these actions 
was determined.  The before and after mitigation results were compared with EMI limits 
suggested by available specifications, standards, and other related documents. 
  
            The results show that a significant reduction in the level of EMI can be achieved 
in low-to-modest size UPSs using inexpensive, standard, and commercially available 
filters, provided the filters are installed in an effective manner.  The reduction of EMI to 
harmless levels at radio-receiving and data-processing sites is shown to be feasible. 
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EXECUTIVE SUMMARY 
 

Electromagnetic interference (EMI) generated by small- and medium-size 

Uninterruptible Power Supplies (UPS) is investigated in this thesis, and a solution to 

minimize the impact of UPS-generated EMI at radio-receiving sites and data-processing 

facilities is described.  The investigation was instigated by field reports of the Navy’s 

Signal-To-Noise Enhancement program (SNEP) teams that have documented numerous 

cases of harmful interference to the reception of radio signals at receiving sites.  In 

addition, cases of the corruption of digital signals in data-processing systems from UPS 

EMI have been noted.  Since the use of small and medium UPS to prevent power 

interruptions to critical equipment is commonplace, a practical and effective solution to 

the EMI problem is considered essential. 

An introduction to power quality problems and EMI is presented in Section II of 

the thesis.  EMI can be defined as any electrical signal that adversely affects the operation 

of electrical, electronic, or communications equipment.  EMI can be generated and 

radiated from many devices.  The radiated electromagnetic fields can be intercepted by a 

victim device and interfere with its operation.  Additionally, EMI can also be conducted 

from a source to a victim over conductors such as power wires, grounds, cable shields, 

and other conducting objects.  Descriptions of typical sources of EMI, victim devices and 

equipment, and EMI standards are presented.  The final discussion presented in this 

section concerns EMI mitigation.  

In the EMI measurement section of the report, the test setup is explained in detail.  

The measurement configuration and test locations are discussed.  The UPS measurement 

section was divided into two sub-sections, the unmodified (standard, no filters installed) 

UPS results and the modified (with EMI filters) UPS results.  The modified UPS results 

show that EMI currents have been reduced significantly with the use of EMI filters on the 

input and output conductors of the UPS.  The final subsection is a proposed UPS 

equipment specification.     
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Appendix A provides a “Table of Noise Sources” obtained from the United States 

Signals Intelligence Directive.  The noise sources or emitters shown in Table A.1 of the 

Appendix are intended only for general guidance to planners and operational units since 

it is impossible to list all possible sources.  While only a limited number of sources 

existed in past years, the recent introduction of new devices into Department of Defense 

facilities (especially digital power-control devices) has introduced many new kinds of 

sources.  Each situation involving electrical and radio-noise problems must be evaluated 

on a case-by-case basis to identify and mitigate any adverse input on facility operations 

from each individual source.  Existing noise sources in Department of Defense facilities 

cannot always be summarily removed because of overall operational considerations, but 

each source can and should be modified or replaced to minimize the deleterious impact of 

noise on the operation of electrical and electronic systems.  Every effort must be made to 

protect against ongoing mission performance degradation created by EMI.  Such actions 

will improve the performance of radio and data-processing systems and often results in 

the improved efficiency of the devices causing noise.   

In Appendix B, a document search was performed to find existing EMI-related 

documents that identify EMI current criteria standards.  This investigation of various 

standards was accomplished to determine the latest interference criteria at the time of the 

writing of this thesis.  Based on several document searches, it was decided to use the 

SNEP interference criteria for this report.  

In Appendix C, a description of UPS systems is presented.  Two typical office 

data-processor-type UPS systems were used in the analysis of this document.  The 

components of UPS (rectifier or charging unit, inverter, and battery bank) were briefly 

discussed. UPS standards and warning signs were next discussed.  

In Appendix D, the test calibration methods are explained.  The descriptions cover 

time-axis calibration of the 3-axis display test equipment, amplitude calibration, 

bandwidth calibration, and probe calibration techniques. 

In Appendix E, an introduction to EMI filter theory is next presented.  

Descriptions of t- and pi-filters are discussed.  For the purposes of this thesis, the 

discussion will be limited to the low-pass type, which allows alternating electrical power 
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to be provided to an UPS while attenuating higher-frequency EMI being conducted out of 

the UPS.  A brief discussion of filter characteristics, insertion loss, standards, and finally 

installation criteria are given. 

In Appendix F, the engineering specification for a single-phase UPS system is 

given.  Section 16611 from the MASTERSPEC DRAWING COORDINATION 

document issued by the American Institute of Architects (AIA) provides an overall 

specification for an Uninterruptible Power Supply (UPS).  Suggested changes in this 

specification are listed in bold.  These changes are directed at the use of UPS systems in 

radio-receiving and sensitive data-processing facilities.  Of particular concern is the 

elimination of harmful levels of UPS generated EMI on radio signal reception and on the 

operation of sensitive data-processing systems. 

In the summary section of the thesis, the author concluded that EMI can degrade 

the operation and performance of many kinds of electronic devices and radio receiving 

systems.  The increasing use of computers, digital-data-processing devices, and power-

control devices in such facilities (including UPS systems, switching power supplies, and 

motor controllers based on solid-state switching techniques) has resulted in many cases of 

EMI problems.  In UPS systems, EMI is generated by the rectifier and inverter sections, 

which often produce noise up to and sometimes higher than 50 MHz.  Also, another 

intermittent source of impulsive noise is load-current changes (load switching), that 

create voltage and current impulses and electrical noise.  The EMI generated by two 

unmodified commercial models of UPS were examined.  The units were modified in 

accordance with integrated Barrier, Filter, Ground techniques and again tested.  

Significant reductions in conducted EMI current was achieved on all conductors 

penetrating the UPS case including all power and ground conductors.  The modifications 

resulted in the test units meeting all known conducted EMI current limits including those 

of MILSTD-461 and the suggested limits provided by the US Navy SNEP team.   

The MASTER DRAWING COORDINATION document issued by the American 

Institute of Architects (AIA) is often used as a guide for the procurement and installation 

of UPS systems.  This document, in its original form, does not consider the impact of 
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UPS-generated EMI on other systems.  Based on the results of this investigation, 

suggested changes to the AIA document are provided in Appendix F. 

In the recommendation section of the thesis, the author offered the following 

suggestions:  

• To follow the Naval Security Group (NSG) recommendation for the use of 

UPS (see page 46): “Only mission-essential equipment not able to tolerate 

even momentary power disturbances shall be connected to UPS power.”  This 

recommendation is fully supported, and the DOD will be best served by 

following the NSG recommendation. 

• In addition, to the above general recommendation, additional precautions need 

to be taken to ensure that UPS-generated EMI does not degrade the operation 

of other radio and electronic systems.  This is especially the case in HF, VHF, 

and UHF radio-receiving sites where UPS-generated EMI is often found at the 

input terminals of the radio receivers and in sensitive data-processing facilities 

where UPS-generated EMI is often found on data-cable shields and grounds.   

• When a determination is made that an UPS is required, or an UPS already 

exists, specific guidelines and critical aspects for consideration both prior to 

purchase and after the product has been obtained or installed should be 

followed.  

• Although an UPS provides excellent protection for sensitive equipment from 

many kinds of power faults, their generation of low- and high-frequency EMI 

must be considered.  At times, interference may exist after the UPS has been 

installed.  During these occasions, the procedure for identifying and 

documenting harmful levels of EMI becomes somewhat more complicated.  

• In cases where UPS noise may be a factor degrading the performance of 

electronic and radio devices or systems, it is recommended that UPS be 

procured and installed in accordance with the additions to “The MASTER 

DRAWING COORDINATION document issued by the American Institute of 

Architects (AIA)”.  These additions and changes are provided in Appendix F.  
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These changes apply to small and medium power UPS systems (up to about 

50 kVA) where standard filters are available as COTS items. 

• Finally, it is recommended that future projects be undertaken to better 

understand methods to control EMI caused by a medium-sized (i.e., 50 to 250 

kVA) UPS and large sizes (i.e., 250 kVA and higher).  A project is required to 

develop methods and filter configurations to lower conducted and radiated 

EMI from medium and high power UPS to acceptable limits. 
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I. INTRODUCTION 

Field experience has shown that electromagnetic interference (EMI) generated by 

Uninterruptible Power Supplies (UPS) and other similar solid-state-switching devices can 

result in the degradation of signal reception at radio-receiving sites and the contamination 

of data at data-processing facilities.  The need for UPS systems to improve power 

reliability for critical devices at such sites is recognized, and this indicates the need for 

devising effective EMI mitigation actions.  This matter is examined in this thesis.   

A review of available EMI standards, specifications, and other related documents 

was undertaken.  This included Department of Defense standards and documents as well 

as standards and documents of other agencies such as the Federal Communications 

Commission (FCC) and the Institute of Electrical and Electronic Engineers (IEEE).  

Although no standard was found that fully covered the UPS/EMI issue, all addressed the 

topic to some extent. 

EMI tests were conducted on two standard UPS units over the frequency range of a 

few kHz and as high as 50 MHz.  EMI suppression actions were then undertaken on both 

units and the amount of EMI reduction was measured.  The method of EMI suppression is 

described.  The results before and after suppression actions were compared to conducted-

current limits suggested by available standards, specifications, and documents. 

The Appendices provide supplemental information on topics associated with 

electrical noise and used for research in this thesis.  The topics include electrical noise 

sources, EMI standards, UPS system descriptions, test calibrations, EMI filter 

characteristics, and UPS technical equipment specifications. 
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II. ELECTROMAGNETIC INTERFERENCE 
 

Factors important in the evaluation of electromagnetic interference from an 

Uninterruptible Power Supply are presented in this chapter. 

A. BACKGROUND 
The operation of sensitive electronic components and systems can typically prove 

to be adversely affected by a number of power-quality factors such as EMI.  An 

understanding of these factors is required for investigation of, and solutions to EMI 

occurrences.  Power quality issues are specifically described by the following general 

categories: 

♦ Transients - Disturbances with high-speed voltage or current changes.  
Transients are sometimes described as spikes, impulses, and surges. 

♦ Momentary interruptions  - Referring to a loss of voltage for periods of less 
than a cycle to several cycles. 

♦ Sags and swells - Variations in voltage or current, ranging from one half 
second to several seconds.  Sags refer to reductions in voltage or current while 
swells refer to increases in voltage or current. 

♦ Under voltage or over voltage - Described as sags or swells continuing for 
more than several seconds or at times lasting for longer than a period of hours. 

♦ Harmonic distortion - Occurrences where the waveshape of voltage or current 
is not sinusoidal.   

 

EMI is one additional factor often affecting the operation of sensitive electrical and 

electronic equipment.  EMI can be defined as any electrical signal that adversely affects 

the operation of electrical, electronic, or communications equipment.  EMI can be 

generated and radiated from many devices (or from the conductors associated with such 

devices).  The radiated electromagnetic fields can be intercepted by a victim device and 

interfere with its operation.  Additionally, EMI can also be conducted from a source to a 

victim over conductors such as power wires, grounds, cable shields, and other conducting 

objects.  Both forms of transmission regarding EMI from a source to its victim must be 

considered when investigating EMI problems.   
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Two terms are often used to describe conducted EMI; they are known as common-

mode and differential-mode.  Common-mode EMI is the interference measured between a 

conductor (or a pair of conductors carrying a desired signal) and a reference ground.  

Differential-mode EMI is interference measured between two conductors carrying desired 

signals.  Conducted EMI interference can be measured and compared with either voltage 

or current established criteria.     

B. TYPICAL SOURCES OF EMI 

EMI is often generated by a variety of electrical and electronic devices and 

equipment.  Typical types of equipment that can create EMI are: 

♦ Uninterruptible Power Supplies 

♦ Telecommunication Equipment 

♦ Personal Computers and Peripheral Equipment  

♦ Switching Power Supplies 

♦ Variable Frequency Induction Motor Drives 

♦ Battery Chargers 

♦ Electronic Dimmers 

♦ Electronic Fluorescent Light Ballasts 

♦ RF Stabilized Arc Welders 

♦ Some Medical Equipment 

♦ Power Conversion Devices Based on Switching Techniques 

 

Additional sources [Reference 1] of EMI are provided in Appendix A and derived 

from the United States Signals Intelligence Directive.  

 

C. VICTIM DEVICES AND EQUIPMENT 

Most electronic devices can be adversely affected by EMI including items in the 

list of sources provided in Section B, but data-processing equipment, communications 
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devices, and radio receivers located in remote facilities are the items of highest concern in 

this thesis.   

The operating speeds of digital devices and equipment continue to increase, 

making them more susceptible to high-frequency EMI.  In addition, the operating voltage 

of many solid-state devices will continue to decrease while conserving power, thereby 

creating susceptibility for malfunction due to transients and other forms of EMI.  Of 

primary concern are these two trends in device and equipment design, combined with the 

increased usage of various devices causing EMI. 

D. EMI STANDARDS 

A large number of publications, references, handbooks, and standards exist 

addressing the topic of EMI.  The pertinent handbooks and standards are listed and 

reviewed in Appendix B.  A number of government handbooks and standards provide 

guidance concerning EMI.  However, the enormous variety of electronic and electrical 

devices, ongoing introduction of new devices and equipment, and the long production 

times for revision of standards and handbooks causes difficulty in covering total aspects of 

EMI.  In addition, there is an increasing tendency to rely on commercial-off-the-shelf 

(COTS) equipment and associated standards for the procurement and installation of 

electrical and electronic equipment.   

Much of the equipment in today’s data-processing centers and radio-receiving 

facilities is purchased in accordance with COTS requirements.  For example, the UPS 

systems of primary concern within this thesis are almost always procured as COTS 

equipment, where the primary standard is the Class A or Class B requirements of Part 15 

of the Federal Communications Commission.  The Class A requirement is directed at 

providing equipment to be installed and used in industrial facilities.  A far more stringent 

Class B requirement is directed at the provision of equipment for use in residences.   
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E. EMI MITIGATION 

A commonly used approach to EMI mitigation, better and bigger grounds (or 

ground impedance), was used with much success in past decades when cases of high-

frequency EMI current flowing on grounds, power conductors, cable shields and other 

conductors at a facility was rare.  Grounds provided a means to establish a voltage 

reference for all equipment in a facility.  The more recent introduction of solid-state 

switching devices and other digital devices into electronic and power-control equipment 

greatly increased the amount and levels of both low-frequency and high-frequency EMI 

current and voltages.  This occurs on grounds, power conductors, cable shields, equipment 

cases, and other conductors.  In addition, the lengths of conductors associated with EMI 

sources, victim equipment, and the paths between the two become electrically long at 

higher-frequency components of EMI.  Multiple wavelength paths now introduce standing 

waves of EMI voltage and current on these paths, which further complicates coupling 

mechanisms between source and victim.  These factors significantly reduce the 

effectiveness of the grounding approach.  Electrical lengths of grounds, power conductors, 

cable shields, and other conductors are now a key factor in the EMI problem rather than a 

part of the solution.  Transmission line and antenna theory is now an integral part of an 

EMI problem. 

Moreover, efficient near-zone coupling mechanisms (both inductive and 

capacitive) allow high-frequency EMI current and voltage from a conductor to be coupled 

onto other closely-spaced conductors at a facility.  The near-zone coupling mechanisms 

and direct conduction of EMI current from a source to another location over multiple 

paths allows EMI current and voltage to spread far beyond its source and to seek paths of 

entry into victim equipment.  This can result in a large number of paths for the flow of 

EMI current making the description and modeling of a source, its paths to a victim, and 

the susceptibility of a victim very difficult and often impractical to identify. 

A description of UPS systems is given in Appendix C.  A simplistic but effective 

approach to the mitigation of EMI from an UPS (or any other source) was taken during 

this effort.  The approach was discovered in the early era of radio and telegraph 

communications.  It consists of merely preventing EMI current from flowing on any 
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conductor outside the case or housing of a device generating EMI along with the 

recognition that grounds are now a part of the EMI problem rather than a solution.   

This approach is described in a number of unclassified publications by Nanevich, 

Vance, and Graf of SRI International [References 2 through 5].  These publications 

describe an EMI control technique they call the “Topological Control of EMI.”  It consists 

of the use of shielding around a source or victim, applying meaningful bandwidth control 

on all conductors entering and exiting the shield, the termination of internal cable shields 

and grounds on the inside surface of the shield, and the termination of external cable 

shields and facility ground conductors on the outside surface of the shield.  This concept 

has been extended and used by USN Signal-To-Noise-Enhancement Program teams.  

These teams applied usage of the electromagnetic barrier, filter, ground (BFG) technique 

[Reference 6] to control EMI from sources, or lowering susceptibility of victims.  The 

BFG technique was applied to the test UPS systems examined in this thesis. 

The general background and information needed for the control of harmful levels 

of electrical and electromagnetic interference from UPS systems has been presented 

above. This background has been stated in terms used by and encountered by radio-

receiving site and sensitive data-processing site personnel.  
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III EMI MEASUREMENTS 
 

This Chapter describes the measurement setup and presents the results of 

measurements on one Interruptible Power Supply of a type frequently found in field sites 

and data-processing facilities. 

A. TEST SETUP DISCUSSION 

The test equipment utilized in this study is identical to the setup used by the NPS 

Signal-Enhancement Laboratory and for the Naval Security Group (NSG) Signal-to-Noise 

Enhancement Program (SNEP).  This equipment has been used for many laboratory and 

field measurement programs.  All tests and measurements provided in this document are 

based on conducted emissions from standard COTS UPS systems.  The measurements 

provide values of conducted EMI current over broad bandwidths before and after the UPS 

systems were modified where the modifications were made to reduce conducted EMI 

current to harmless levels.  Figure 3.1 shows a photograph of the primary items of 

instrumentation in this test setup. 

 

Figure 3.1: The SNEP Test Setup 
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Figure 3.1 shows a low-frequency spectrum analyzer in the lower right part of the 

view, a high-frequency spectrum analyzer in the lower left part of the view, the time-

history display on top of the high-frequency spectrum analyzer and line amplifiers on top 

of the time-history display.  The current probes used to measure conducted EMI current 

are not shown. 

The instrumentation setup provides a capability to measure low-frequency EMI 

current over the frequency range of 0 to 100 kHz in addition to high-frequency EMI 

current over the frequency range of 50 kHz up to 100 MHz.  Both capabilities were used 

to produce the examples of data shown in this document.  Figure 3.2 shows a block 

diagram of the instrumentation used for the low-frequency measurements. 
  

CURRENT
PROBE

LINE
AMPLIFIER
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Figure 3.2: Block Diagram of the Low-Frequency Test Setup 
 

 

A clamp-on Tektronix Model CT-4/P6021 current probe was provided to measure 

low-frequency EMI current on power and ground conductors.  The frequency range of the 

probe was much larger than the frequency range of any measurement, but the full 

frequency range could not be utilized.  The maximum amplitude of the low- or high-

frequency components of EMI current and the lowest levels of EMI current occurring at 

higher frequencies exceeded the dynamic range of the instrumentation.  This prevented 

simultaneous measurement of low- and high-frequency currents.  A Hewlett-Packard 

Model 3561 spectrum analyzer was used to measure the amplitude of spectral components 

of low-frequency EMI.  A WRV Model A-102 line amplifier was provided to measure 
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very low levels of EMI current.  The line amplifier was seldom used, since most 

components of EMI current were high enough to be examined directly by the spectrum 

analyzer. A Tektronix Model C-5C oscilloscope camera was used to photographically 

record examples of EMI current. 

A second set of instrumentation was used to measure high-frequency EMI current.  

Figure 3.3 shows a block diagram of this instrumentation. 

 

CURRENT
PROBE

LINE
AMPLIFIER

SPECTRUM
ANALYZER

3-AXIS
DISPLAY

OSCILLOSCOPE
CAMERA

 

Figure 3.3: Block Diagram of High-Frequency Test Setup 
 

A clamp-on Fischer Model F-70 current probe was used to measure EMI current 

over the frequency range of 100 kHz through 100 MHz.  A calibration curve was provided 

to extend the frequency range of the probe down to 50 kHz.  This provided some overlap 

in the frequency range of the low- and high-frequency instrumentation systems.  A high 

dynamic-range line amplifier providing a gain of 20 dB was used to increase the 

measurement range of the setup to low values.  A standard Hewlett Packard Model-141 

spectrum analyzer was used to examine the spectral and temporal structure of conducted 

EMI current.  An ELF Engineering 3-axis display was used to provide a time-history view 

of variations in the level and frequency of spectral components of EMI current and to 

allow examination of the temporal structure of impulsive components of the current.  A 

Tektronix Model C-5C oscilloscope camera was used to photographically record examples 

of conducted EMI current.  
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Figure 3.4 shows the format of the time-history presentation.  A small 

identification chart was added to each example of data presented at the lower left part of 

the data.  The information in this chart is: 

Line 1 Date of the measurement in yymmdd format, local time 

 Line 2  Site ID, UPS ID 

 Line 3  Conductor ID, UPS Load Information 

Line 4 Center Frequency, Scan Width, IF Bandwidth, Scan Time 

 Line 5  Line Amplifier Gain, RF Attenuation, IF Gain 

 Line 6  Additional Information 

 

 
 

Figure 3.4: Format of the 3-Axis Display 
 

B. MEASUREMENT CONFIGURATION   

Figure 3.5 shows a photograph of the UPS under test.  APPENDIX C presents a 

brief system description of the UPS systems.  The UPS under-test is mounted on a small 

pallet and the input and output power conductors are shown in the photograph.  Power 

cord adapters were used to allow for measurement of current on individual conductors of 

the power cord or the common-mode current on all conductors.  A Fischer Model F-70 

current probe is shown in the lower part of the view along with a section of cardboard 

used to insulate the probe from the cement floor of the test location.   
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Figure 3.5: UPS under Test 
 

Combinations of tests were performed for purposes of this study.  First, a calibra-

tion test was performed.  A no-load test was then completed to examine the ambient cur-

rent flowing on the power conductors.  This was followed by an on-off test to compare the 

ambient levels of current with the UPS operating levels of current.  Finally, a test was 

conducted with the UPS operating with a resistive load.  These sequences of tests were 

performed on each UPS, first with the COTS configuration of the UPS, and second with a 

filter added to the UPS input and output conductors. 

The detailed test procedures are provided in Appendix D.  The calibration curves 

for the instrumentation are also provided in Appendix D.  

C. TEST LOCATIONS 

Two test locations in California were used for measurement.  The first location 

was at a small, suburban, radio-receiving site located in Los Altos Hills, CA.  This was a 

noise-quiet radio-receiving site used for special signal-reception tests.  The second 

location was at the Signal Enhancement Laboratory in Spanagel Hall of the Naval 

Postgraduate School in Monterey, CA.   
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While the first site was considered to be a low-noise radio-receiving site, it was 

located fairly close to several high-power medium-frequency broadcast stations in the San 

Francisco region.  Additionally, it was fed from overhead power lines although sources of 

noise from hardware on the power-line had been eliminated. 

The second site was fed from underground power lines, but the facility contained 

laboratories with electrical and electronic equipment.  Included were a large number of 

power-conversion devices, several motor controllers, a large number and variety of 

computers, data-processing equipment, and other sources.  These sources impressed 

significant levels of ambient EMI current onto the power conductors. 

D. UNMODIFIED UPS RESULTS 

1. UPS Models Examined 

A standard Model Ferrups FE/QFE 1.4 kVA UPS manufactured by the Best 

Corporation of Necedah WI was obtained for the investigation of EMI.  In addition, a 

Model Ferrups FE/QFE 2.1 kVA was also available, as well as models from other 

manufacturers.  All UPS units examined were new and in excellent operating condition.   

Past experience with UPS units installed in field sites suggested the Model Ferrups 

FE/QFE 1.4 kVA generated less, but unknown amounts of EMI, compared to other 

models from Best or from many other manufacturers.  Thus, EMI levels from the 

unmodified UPS presented in this thesis are ostensibly lower than many other similar 

units.  Curiously interesting is that all UPS units investigated during this effort were 

advertised as meeting FCC Class A requirements.  No UPS could be found meeting the 

more stringent FCC Class B requirements, which have stricter guidelines.   

Conducted EMI was measured on all conductors penetrating the case of each UPS 

during normal operation.  No additional conductors or test conductors were allowed to 

penetrate the case during the tests.  The metal case provided with the UPS was in place 

during all measurements to minimize radiated effects.  The UPS case was unmodified and 

it was installed in accordance with the manufacturer’s instructions.   
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Tests were first made with the UPS as it was obtained from the manufacturer.  The 

UPS as then modified in accordance with Barrier, Filter, Ground principles [Reference 5] 

and re-tested using the same instrumentation. 

2. Ambient EMI Current 

 During the tests the ambient EMI current on the input power conductors proved 

very high at frequencies below 2 MHz, interfering with low-frequency measurements. 

Illustrating detrimental effects, EMI current was measured on input power conductors 

while the UPS was switched off.  Figure 3.6 shows the spectral components of ambient 

current on the white, black, and green conductors of the UPS power cord. 

 The data in Figure 3.6 shows ambient current from two different sources flowing 

on all of the input power wires.  Signals from nearby broadcast stations induced current 

into the overhead distribution line providing electrical power to the test facility.  These 

signals are represented by the discrete-frequency spectral components shown in each of 

the three amplitude-vs.-frequency views.  In addition, broadband impulsive noise current 

was also flowing on the power wires.  The source of this current was later traced to a 

recently installed variable-speed drive on an air-conditioning system at a nearby residence 

receiving power from the same distribution line as the measurement facility.   

Significant variations in the amplitude of the ambient impulsive current are shown 

across the 2-MHz band of the data in Figure 3.6, including peaks and nulls.  The peaks 

and nulls suggest that resonance conditions existed in the power conductors, but this is to 

be expected since the conductors are electrically long at the frequency range of the data.  

The amplitude of the ambient current can be scaled from the data for any desired  

frequency, but a single value of current amplitude cannot be used to provide a meaningful 

or complete measure of amplitude.  Thus, a meter reading of the EMI current is not 

feasible. 
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Figure 3-6: Ambient EMI Current on Input Power Cord Conductors  
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The high ambient current on power conductors is one factor that must be consider-

ed during such tests. Impulsive noise from power-conversion equipment based on solid-

state switching techniques is now encountered in most facilities.  For critical tests it is 

necessary to use a diesel-powered generator to avoid contaminated power.  The amplitude 

of the ambient current from these two sources must be ignored in the evaluation of EMI 

from the UPS. 

3. EMI Current, Input Conductors 

The UPS was then turned on and the battery was allowed to charge to its full level.  

When the battery was fully charged, a 300-watt resistive load was switched on.  (A 

resistive load was used to avoid the harmonics and impulsive EMI current generated by 

loads containing nonlinear devices such as switching power supplies, motor controllers, 

computers, and other similar devices.)  A 50-ft power cord was used between the UPS and 

the resistive load to provide an electrically long length of conductor between the UPS and 

the load.  EMI current was then measured on the three input power conductors and the 

three output conductors.    The broadband impulsive current from the switching source 

was somewhat similar for the black and white conductors in that the amplitude was high 

from about 10 kHz up to 1 MHz.  It decreased in amplitude and became quite low at 2 

MHz.  The current on the green-wire ground conductor was low at approximately 100 

kHz, reaching peaks in the range of 0.5 to 1 MHz.  The current then decreased in 

amplitude above 1 MHz and was quite low at 2 MHz.     

Broadcast-band signals were found on all three conductors.  The presence of the 

broadcast-band signals suggest that a site with an underground power feed would be more 

suitable since an underground feed would not act as a receiving antenna for such signals. 

Figures 3.7 through 3.9 show the low-frequency ambient and UPS-generated EMI 

current flowing on the input power conductors when the UPS was operated.  Both the 

amplitude-vs.-frequency and the time-history views are provided to show the coarse-scale 

temporal of impulsive noise.  The upper part of the time-history view shows the ambient 
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Figure 3.7: Ambient and UPS EMI Current on the Black Conductor,  

Low Frequencies 
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Figure 3.8: Ambient and UPS EMI Current on the White Conductor,  
Low Frequencies 
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Figure 3.9: Ambient and UPS EMI Current on the Green Conductor,  
Low Frequencies 
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current.  The display was temporarily placed into a “freeze-mode” after portraying a short 

period of ambient current to allow the operation of the UPS to stabilize.  The display was 

then unfrozen to show the additional EMI current generated by the UPS.  The spectral 

structure of both the ambient current and the UPS-generated impulsive current is shown 

in the amplitude-vs.-frequency view.   

Figure 3.7 shows the low-frequency current flowing on the black input power 

conductor over the frequency range of 0 to 2 MHz.  In this case, ambient noise was 

higher than the UPS generated noise.  It reached a sharp peak of about 20 µΑ near 0.5 

MHz.  It is impossible to read the current levels in the part of the medium-wave broadcast 

band containing closely-packed signals with the wide frequency span used to generate the 

data in Figure 3.7, and it is necessary to search between broadcast-band signals by 

employing a narrow scan width.  Figure 3.8 shows ambient and UPS-generated current 

on the white input conductor and Figure 3.9 shows the ambient and UPS-generated 

current on the green-ground conductor of the power cord. 

The high-frequency components at 2 to 12 MHz of EMI current flowing on the 

conductors of the input power cord were examined next.  In this case, the ambient 

currents, with minor exceptions, were well below the UPS-generated levels and in most 

cases below the signal-detection sensitivity of the instrumentation. 

Figures 3.10 through 3.12 show EMI current levels on the black, white, and green 

conductors.  The presentation is identical to that used for the low-frequency current 

measurements except for the frequency span.   

Figure 3.10 shows ambient and EMI current flowing on the black conductor over 

the frequency range of 2-to-12 MHz.  The current fell below instrumentation sensitivity 

at frequencies above 12 MHz for the particular model of UPS being tested, therefore 

higher frequency data is not shown.  A small amount of ambient current is shown at the 

extreme left edge of the frequency range.  The broad peak in current centered at about 6 

MHz is from the UPS, reaching a level of about 5 µA.  A smaller peak in EMI current 

was found near 12.5 MHz.  The four discrete-frequency spectral components in the upper 
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Figure 3.10: Ambient and UPS EMI Current on the Black Conductor, 
High Frequencies 
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Figure 3.11: Ambient and UPS EMI Current on the White Conductor, 
High Frequencies 
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Figure 3.12: Ambient and UPS EMI Current on the Green Conductor, 
High Frequencies 
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half of the frequency range are HF signals collected by the power wiring.  These signals 

were present regardless of whether the UPS was switched off, or on, while testing. 

Figure 3.11 shows the ambient and EMI current flowing on the white conductor 

over the frequency range of 2-to-12 MHz.  The ambient current at the low end of the 

frequency span was lower than observed with the black conductor, while the broad peak in 

UPS-generated EMI current was centered somewhat lower in frequency at about 4 MHz.  

The amplitude proved somewhat higher at 11 µA.  The higher-frequency peak found on 

the black conductor did not appear on the white conductor.   The four HF signals did 

appear in the data. 

Figure 3.12 shows ambient and EMI current flowing on the green-wire ground 

conductor of the power cord.  A small amount of ambient current was found at the 

extreme low end of the frequency scale.  The broad spectral peak in EMI current shown 

near 4 MHz is wider than for the other conductors, and the measurable EMI current 

extended upward to 12 MHz.  Narrow peaks and nulls in the amplitude of UPS-generated 

EMI current are shown for all conductors suggesting resonant conditions on the power 

conductors. 

4. EMI Current, Output Conductors 

A similar set of measurements was made on the output conductors running from 

the UPS to the resistive load.  Figures 3.13 through 3.15 provide levels of EMI current on 

the output conductors running from the UPS to the resistive load.  The data shows the 

current over the frequency range of 0 to 2 MHz although the amplitude readings are 

calibrated only over the 0.1 to 2 MHz portion of the data.  In this case the ambient current 

from impulsive noise was below the levels of UPS-generated current, while discrete-

frequency signals from the local medium-frequency broadcast-band stations appear in the 

data and must be ignored.  Figure 3.13 shows EMI current flowing on the black output 

conductor.  The slanting lines in the time-history view provide a convenient means to 

separate the UPS- 
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Figure 3.13: UPS EMI Current on the Black Output Conductor,  
Low Frequencies 
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Figure 3.14: UPS EMI Current on the White Output Conductor,  

Low Frequencies 
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Figure 3.15: UPS EMI Current on the Green Output Conductor,  

Low Frequencies 
 

 28



 

generated noise from the broadcast-band signals.  A peak in the UPS-generated noise is 

shown at 0.4 MHz.  Lower-level peaks in EMI current can be distinguished throughout the 

frequency range including a distinct peak near the upper end of the frequency scale at 1.7 

to 1.8 MHz. 

Figure 3.14 shows EMI current flowing on the white output power conductor.  The 

results are similar to those obtained from the black conductor. 

Figure 3.15 shows EMI current flowing on the green-wire ground conductor 

running from the UPS to the resistive load.  The view is less cluttered than for the black 

and white conductors because less ambient current from broadcast signals is picked up by 

this conductor.   

Distinctive spectral peaks and nulls in UPS-generated current appear on all 

conductors.  This is an indicator that resonance conditions exist on all conductors from a 

combination of conductor length and the impedance of UPS components in the output 

paths.  The peaks and nulls in the current makes it impossible to describe the amplitude of 

the EMI current with a single number; however, a value of UPS current can be provided at 

any selected frequency.   

EMI and ambient current flowing on the output conductors over the frequency 

range of 2 to 12 MHz was also examined.  Figures 3.16 through 3.18 show the UPS-

generated EMI current on the conductors of the output power cord.  In this case most of 

the ambient current was well below the UPS-generated EMI current and only a small 

amount of ambient current appears in the data. 

Figure 3.16 shows the current on the black output conductor over the 2- to 12- 

MHz frequency band.  Figure 3.17 shows the current on the white output conductor and 

Figure 3.18 shows the current on the green-wire ground conductor. 

An examination of the data from the three output power conductors shows two 

distinct variations in amplitude with frequency.  Broad peaks and nulls in the amplitude of 

the UPS-generated EMI current were found on all conductors.  
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Figure 3.16: UPS EMI Current on the Black Output Conductor,  

High Frequencies 
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Figure 3.17: UPS EMI Current on the White Output Conductor, 
High Frequencies 
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Figure 3.18: UPS EMI Current on the Green Output Conductor,  

High Frequencies 
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In addition, narrow peaks and nulls also exist in the data.  This indicates that two 

distinct resonance phenomena exist on the output conductors.  These peaks and nulls 

prevent providing a single number for the UPS-generated EMI current although a value 

can be provided for any specific frequency.  Two discrete-frequency peaks in ambient 

current appear on the black and white conductors at frequencies near 4 and 8 MHz.  

These signals were from nearby HF transmitter facilities; therefore, they can be ignored. 

E. MODIFIED UPS RESULTS 

1. Modifications 

Standard COTS filters were added to the input and output power conductors in a 

Barrier, Filter, Ground (BFG) Configuration.  A description of EMI filters is given in 

Appendix E.  Figure 3.19 shows the configuration employed to allow 60-Hz current to 

flow into and out of the UPS.   

The filters provided high impedance to the flow of high-frequency EMI current 

through and then out of the UPS on the black and white power conductors at frequencies 

above its cutoff frequency.  Of special concern was the prevention of UPS-generated EMI 

current from escaping the UPS case on the green-wire ground while still maintaining the 

required electrical safety requirements of the National Electric Code.  If EMI current was 

allowed to flow on the green-wire ground, it would be inductively coupled back onto the 

black, white, and other conductors thereby negating the effectiveness of the filtering 

provided on the black and white conductors.  

The flow of current on the green wire was limited to low frequencies by 

connecting the external green-wire ground to the outside surface of the UPS case and the 

internal green-wire ground to the interior of the UPS Case.  This type of connection was 

provided by the metal shell of the COTS filters. 

Figure 3-20 shows a photograph of the modified UPS.  Both the input and the 

output filters were added to the back panel of the UPS.  Since there was room inside the 

UPS case for the filters, the modification was easy to implement. 
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Figure 3.19: Filter Configuration 

 

 

 

Figure 3.20: Rear Panel of the Modified UPS 

 

2.  Modified UPS Results 

Measurements on the modified UPS were made at the laboratory facilities of the 

Signal Enhancement Laboratory of the Naval Postgraduate School.  Unfortunately, the 

ambient EMI level at this facility was too high to obtain good low-frequency EMI data.  
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The presence of many other sources of EMI in the building including variable-speed 

motor controllers, many computers, switching power supplies, and other digital devices 

prevented low-frequency data from being obtained.  The ambient interference was 

sufficiently high, making the normal reception of radio signals impossible from very low 

frequencies to above 30 MHz.  In addition, instances of the corruption of data lines with 

COTS type data-processing equipment was common in the facility when certain power-

conversion devices were operated.  Reasonable high-frequency data was obtained in spite 

of the high ambient EMI levels.  Figures 3.21 through 3.23 shows the high-frequency 

EMI current on the UPS input conductors over the 2- to 12-MHz band.   

Figure 3.21 shows current flowing on the black input conductor.  Some small 

peaks in current are shown in the data, but these were all ambient current which was 

present whether the UPS was switched on or off during testing.   

Figure 3.22 shows the high-frequency EMI current flowing in the white input 

conductor.  Again, all spectral components shown in this view were caused by other 

devices operating in the test facility and not from the UPS under test.  No low-level 

spectral-component of current could be traced to the UPS.   

Figure 3.23 shows the high-frequency EMI current flowing on the input green-

wire ground conductor of the UPS power cord.  Once again, the current shown in the data 

was from other sources, and no spectral component could be traced to the UPS under test.  

The lack of high-frequency UPS-generated current on the green-wire ground shows the 

effectiveness of the green-wire ground connection employed in the UPS modifications.  

This connection provided a conducting path at low-frequencies, meeting the requirements 

of the National Electric Code, and it employed the shielding provided by the metal UPS 

case to prevent the flow of UPS-generated EMI current to the outside green-wire ground 

conductor.  

Figures 3.24 through 3.26 shows the high-frequency EMI current flowing on the 

output conductors of the modified UPS.  Figure 3.24 shows the current flowing on the 
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Figure 3.21: High-frequency EMI Current on the Black Input Conductor,  

Modified UPS 
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Figure 3.22: High-frequency EMI Current on the White Input Conductor,  
Modified UPS 
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Figure 3.23: High-frequency EMI Current on the Green Input Conductor,  
Modified UPS 
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Figure 3.24: High-frequency EMI Current on the Black Output Conductor,  
Modified UPS 
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Figure 3.25: High-frequency EMI Current on the White Output Conductor,  
Modified UPS 
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Figure 3.26: High-frequency EMI Current on the Green Output Conductor,  

Modified UPS 
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black output conductor.   The minimum detectable signal for the example shown is about   

7 µA peak and 4 µΑ rms using a measurement bandwidth of 100 kHz.  Additionally, a 

lower-level discrete-frequency signal and/or lower-level narrow band spectral compo-

nents of noise can be detected with a narrower measurement bandwidth.  This was 

attempted at measurement bandwidths down to 3 kHz and UPS-generated noise could not 

be detected. 

Figure 3.25 shows a similar result for the white input power conductor.  The 

modified UPS again lowered EMI current well below the detection level of the 

instrumentation. 

Figure 3.26 shows the high-frequency EMI current flowing on the output green-

wire ground conductor.  In this case ambient current was found, but no UPS-generated 

component was detectable.  The ambient current resulted from the conducting path 

provided by the input green-wire conductor, the external surface of the UPS case, and the 

green-wire output ground conductor.   

While the configuration with the addition of modifications successfully prevented 

UPS-generated current from flowing on input and output conductors, the UPS 

modifications could not prevent ambient current generated by other sources from flowing 

on facility ground conductors.  The ambient current from other sources must be 

controlled at each source and the modification of other devices will not correct other 

facility problems.  This is also a clear indication that ambient current in a facility ground 

cannot be eliminated by ground-system modifications. 

F. PROPOSED UPS EQUIPMENT SPECIFICATIONS 

Although no manufacturers have EMI filters installed prior to purchase, it is 

suggested that engineers, users, or procurers of UPS systems edit UPS equipment 

specification (AIA Specification 16611, Appendix F of this thesis) to reflect EMI current 

concerns when installing an UPS into a facility containing receiving and sensitive data-

processing equipment.  It is noted that some manufacturers will agree to have EMI filters 

installed upon request.  During the specification phase of procurement, the purchaser  
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must specifically advise the manufacturer that filters be placed at the input and output of 

UPS systems.  It is imperative that an investigation of the UPS equipment specification 

sheet be made prior to purchasing the unit in order to make certain these filters can be 

added by the manufacturer.  Otherwise, satisfaction with the UPS will not be as desired 

since these filters obviously do make the product more reliable. 

This technical equipment specification is from Section 16611 (Facilities, 

Electrical Components) from MASTERSPEC DRAWING COORDINATION, The 

American Institute of Architects (AIA), December 2000.  A user of UPS equipment can 

modify this specification for their own uniquely personal situations.  This particular 

specification is directed toward a single-phase, on-line, static-type, Uninterruptible Power 

Supply (UPS) system.  

The data provided in the thesis shows conclusively that a small to mid-size UPS 

can be modified to prevent the occurrence of harmful electromagnetic interference at 

radio-receiving and sensitive data-processing facilities.  Furthermore, this can be 

achieved by the use of inexpensive commercial components. 
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IV.  SUMMARY AND RECOMMENDATIONS 

 

A. SUMMARY 

Electromagnetic interference (EMI) can degrade the operation and performance of 

many kinds of electronic devices and radio receiving systems.  This is especially the case 

at Department of Defense radio-receiving sites and sensitive data-processing facilities.  

The increasing use of computers, digital-data-processing devices, and power-control 

devices in such facilities [including Uninterruptible Power Supplies (UPS), switching 

power supplies, and motor controllers based on solid-state switching techniques] has 

resulted in many cases of EMI problems.  This thesis concentrated on EMI generated by 

UPS. 

EMI is generated by the rectifier and inverter sections of UPS systems, which 

often produce noise up to and sometimes higher than 50 MHz.  Also, another intermittent 

source of impulsive noise is load-current changes (load switching) that create voltage and 

current impulses and electrical noise.  

The EMI generated by two unmodified commercial models of UPS was exam-

ined.  The detailed results from one of the two systems are provided in this thesis.  The 

second system provided almost identical results.  The particular units available for testing 

were obtained for another task, and they were selected because of their low ambient 

levels of EMI compared to other available commercial units.  Nevertheless, their 

conducted EMI levels were considered too high for use in HF and VHF radio-receiving 

sites and for some sensitive data-processing uses.  

 The units were modified in accordance with integrated Barrier, Filter, Ground 

techniques and again tested.  Significant reductions in conducted EMI current was 

achieved on all conductors penetrating the UPS case including all power and ground 

conductors.  The modifications resulted in the test units meeting all known conducted 
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EMI current limits including those of MIL-STD-461 and the suggested limits provided by 

the US Navy SNEP team.   

The MASTER DRAWING COORDINATION document issued by the American 

Institute of Architects (AIA) dated December 2000 is often used as a guide for the 

procurement and installation of UPS systems.  This document, in its original form, does 

not consider the impact of UPS-generated EMI on other systems.  Based on the results of 

this investigation, suggested changes to the AIA document are provided in Appendix F. 

B. RECOMMENDATIONS 

The Naval Security Group (NSG) issued a recommendation in 1994 for the use of 

UPS, which is shown below.  This recommendation is fully supported, and the DOD will 

be best served by following the NSG recommendation: 

 
“ONLY MISSION-ESSENTIAL EQUIPMENT NOT ABLE TO TOLERATE 

EVEN MOMENTARY POWER DISTURBANCES SHALL BE CONNECTED 
TO UPS POWER.” 

 
[From NSGINT 113`0.1D G43 (CRITICAL LOAD), 27 Jan 1994 

 

In addition, to the above general recommendation, additional precautions need to 

be taken to ensure that UPS-generated EMI does not degrade the operation of other radio 

and electronic systems.  This is especially the case in HF, VHF, and UHF radio-receiving 

sites where UPS-generated EMI is often found at the input terminals of the radio 

receivers and in sensitive data-processing facilities where UPS-generated EMI is often 

found on data-cable shields and grounds.   

When a determination is made that an UPS is required, or an UPS already exists, 

specific guidelines and critical aspects for consideration both prior to purchase and after 

the product has been obtained or installed should be followed.  Following are 

precautionary measures and information designed to insure product satisfaction and to 

guide a purchaser through the ordering process: 
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♦ Upon determining the feasibility of purchasing an UPS, it must be 
remembered that the UPS will use energy in a rather inefficient manner, 
although at times (such as in a mission critical area) the benefit provided by an 
UPS far outweighs any detrimental aspect.  

♦ Although the electronics, mechanical components, and battery portions are 
quite reliable, an UPS will require regular maintenance or repair. Because of 
this, an annual maintenance contract included with any order is desirable to 
insure reliable operation and optimum satisfaction.  

♦ Prior to purchase, a determination should be made as to whether any location 
chosen for installation is a sensitive facility (i.e., data- processing or radio-
receiving facility), due to the fact that these areas have the highest 
susceptibility to noise and interference.  

♦ Care should be taken to review the equipment specification sheet, to ensure 
that EMI filters have been properly installed by the manufacturer.  

♦ In most cases, the use of EMI filters on input and output power conductors 
will be an additional item to purchase; however, these filters are considered 
"off the shelf" and in actuality it will prove less costly to have them installed 
at the manufacturer's plant prior to shipment.  

♦ Upon arrival of the order, and before acceptance of the UPS, carefully peruse 
the accompanying equipment specification sheet. This provides an 
opportunity for equipment modifications to be made in advance of acceptance. 

 

Although an UPS provides excellent protection for sensitive equipment from 

many kinds of power faults, the generation of low- and high-frequency EMI must be 

considered. At times, interference may exist after the UPS has been installed.  During 

these occasions, the procedure for identifying and documenting harmful levels of EMI 

becomes somewhat more complicated.  The following recommendations or suggestions 

should be considered after installation has been accomplished and EMI is an identified 

problem: 

♦ A study must be conducted by a team of EMI technical experts to investigate 
all sources of harmful levels of EMI.  

♦ The team must narrow the cause of EMI from many potential sources to the 
UPS.  
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♦ Prior to taking any action to modify the UPS, all other sources of EMI must be 
considered.  The time of day/week when the EMI occurs at the site should be 
identified to determine if a pattern of occurrence is repetitive, as this is a key 
in identifying the sources of EMI.   

♦ Additionally, improper grounding or radiated EMI may also be a reason for 
interference problems. 

♦ If an UPS is shown to be a source of EMI, it is recommended that wide-band 
current clamps and a spectrum analyzer be used to examine the level of the 
EMI over frequency ranges of interest.   

♦ If EMI current exceeds the threshold of criteria provided by the SNEP teams 
or the limits in MIL STD 461, then filters should be added to all input and 
output conductors of the UPS system.  Appendix E identifies several steps to 
determine the filter specification decision making process.  

 

In cases where UPS noise may be a factor degrading the performance of 

electronic and radio devices and systems, it is recommended that UPS be procured and 

installed in accordance with the additions to “The MASTER DRAWING COORDINA-

TION document issued by the American Institute of Architects (AIA) dated December 

2000”.  These additions and changes are provided in Appendix F.  These changes apply 

to small and medium power UPS systems (up to about 50 kVA) where standard filters are 

available as COTS items. 

Finally, it is recommended that future projects be undertaken to better understand 

methods to control EMI caused by a medium-sized (i.e., 50 to 250 kVA) UPS and large 

sizes (i.e., 250 kVA and higher).  The project is required to develop methods and filter 

configurations to lower conducted and radiated EMI from medium and high power UPS 

to acceptable limits. 
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APPENDIX A. SOURCES OF EMI AND NOISE 

 

This Appendix provides a “Table of Noise Sources” obtained from United States 

Signals Intelligence Directive dated July 1998.  The title of the directive was called  

“Electromagnetic Compatibility Technical Guidelines”.   

The sources in Table A.1 are intended only for general guidance to planners and 

operational units since it is impossible to list all possible sources.  While only a limited 

number of sources existed in past years, the recent introduction of new devices into 

Department of Defense facilities, especially digital power-control devices, has introduced 

many new kinds of sources.  Each situation involving electrical and radio-noise problems 

must be evaluated on a case-by-case basis to identify and mitigate any adverse input on 

facility operations from each individual source.   

Existing noise sources in Department of Defense facilities cannot always be 

summarily removed because of overall operational considerations, but each source can 

and should be modified or replaced to minimize the deleterious impact of noise on the 

operation of electrical and electronic systems.  Every effort must be made to protect 

against ongoing mission performance degradation created by EMI.  Such actions will 

improve the performance of radio and data-processing systems and usually result in the 

improved efficiency of the devices causing noise.   

Of special concern is the recent introduction of COTS equipment into DOD 

facilities without full consideration of the possibility that some COTS devices are major 

sources of radio and electrical noise.  Once such devices are introduced into a facility, a 

major effort is often required to reduce EMI from them to harmless levels. 

Table A.1 includes many sources of EMI identified in past years.  It includes 

sources producing both radiated and conducted EMI. 
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Table A.1: NOISE DESCRIPTIONS AND TYPICAL SOURCES  
 

SOURCES NOISE DESCRIPTIONS 

Diesel engine generators Rarely produce radio noise 
Transformers Rarely produce radio noise 
Battery charger 
 

More or less continuous frying 
noise hum; harmonics with power   

Mercury arc rectifiers More or less continuous frying 
noise hum; harmonics with power   

Silicon-controlled rectifiers 
(SCRs) 

More or less continuous frying 
noise hum; harmonics with power   

Separate radio ground and 
power 

More or less continuous frying 
noise hum; harmonics with power   

Ground in dry weather More or less continuous frying 
noise hum; harmonics with power   

Hot or burned fuse holders More or less continuous frying 
noise hum; harmonics with power   

Hot or burned switch or 
circuit breaker contacts, wet 
insulation, wires on trees, 
etc.,in wet weather 

More or less continuous frying 
noise hum; harmonics with power   

Faulty heating devices More or less continuous frying 
noise hum; harmonics with power   

Incandescent lamps, with 
broken filament or loose in 
socket 

More or less continuous frying 
noise hum; harmonics with power   

Thermostats Frying noise with power hum 
harmonics; cut off and on 

Voltage regulators Frying noise with power hum 
harmonics; cut off and on 

Slowly opening switches or 
Controllers   

Frying noise with power hum 
harmonics; cut off and on 

Certain motors during starting 
Period   

Frying noise with power hum 
harmonics; cut off and on 

Faulty heating device Frying noise with power hum 
harmonics; cut off and on 

Fluorescent lamps Frying noise with power hum 
harmonics; cut off and on 
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Table A.1 (Continued):  NOISE DESCRIPTIONS AND TYPICAL SOURCES 
 

Ultraviolet-ray machine   Frying noise with power hum 
harmonics; cut off and on 

Diathermy machine   Frying noise with power hum 
harmonics; cut off and on 

Small motors with commutator, 
such as electric razors, drills, 
vacuum cleaners, or mixers 

Buzzing noise 

Vehicle or variable speed  
commutator motor 

Buzzing noise 

Stationary gasoline engine Erratic clicks of different intensities 
Switches being turned off and 
on  

Erratic clicks of different intensities 

Appliances being plugged in or 
disconnected 

Erratic clicks of different intensities 

Thermostats   Erratic clicks of different intensities 
Time clocks  Erratic clicks of different intensities 
Telephone dialing  Erratic clicks of different intensities 
Ungrounded wires or pieces of  
sheet metal blowing against  
other pieces of metal in windy 
weather 

Erratic clicks of different intensities 

Electric fence  Regular clicks (frequently at    
1-second intervals) 

In dry weather - "high-line 
noise”, usually off site 

Faint hiss with or without power  
frequency - hum modulation, 
punctuated by a "sleet on tin roof" 
effect   

In dry weather - neon sign,  
usually off site 

Faint hiss with or without power  
frequency - hum modulation, 
punctuated by a "sleet on tin roof" 
effect   

During snow storm, or sand 
storm, sometimes with light 
rain, but always with wind-
precipitation static corona 
effects from ungrounded guy 
wires, antennas, or insulated 
metal structures 

Faint hiss with or without power  
frequency - hum modulation, 
punctuated by a "sleet on tin roof" 
effect 
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APPENDIX B. EMI RELATED TECHNICAL STANDARDS 
 

A. INTRODUCTION 

Many organizations and agencies provide standards, handbooks, and other 

publications related to EMI.  Following is a partial listing of such documents: 

♦ FCC Part 15, “Radio Frequency Devices”, Federal Communications 
Commission, Washington D.C. 

♦ FCC Part 18, “Industrial, Scientific, and Medical Equipment”, Federal 
Communications Commission, Washington D.C. 

♦ ANSI/IEEE, “Radio Interference: Methods of Measurement of Conducted 
Interference Output to the Power Line from AM and Television Broadcast 
Receivers in the Range of 300 kHz to 25 MHz”, American National 
Standards Institute (ANSI) and Institute of Electrical and Electronic 
Engineers (IEEE). 

♦ ANSI/IEEE 214, “Construction Drawings of Line Impedance Networks 
Required for Measurements of Conducted Interference to the Power Line 
from FM and Television Broadcast Receivers in the Range of 300 kHz to 
25 MHz as Specified in ANSI/IEEE Standard 213”, American National 
Standards Institute (ANSI) and Institute of Electrical and Electronic 
Engineers (IEEE).  

♦ ANSI/IEEE 518, “Guide for the Installation for Electrical Equipment to 
Minimize Noise Inputs to Controllers from External Sources”, American 
National Standards Institute (ANSI) and Institute of Electrical and 
Electronic Engineers (IEEE). 

♦ ANSI/IEEE C63.2, “ANSI Specification for Electromagnetic Noise and 
Field Instrumentation, 10 kHz to 40 GHz”, American National Standards 
Institute (ANSI) and Institute of Electrical and Electronic Engineers 
(IEEE). 

♦ ANSI/IEEE C63.4, “ANSI Specification for Radio-Noise Emissions from 
Low-Voltage Electrical and Electronic Equipment in the Range of 10 kHz 
to  1 GHz”, American National Standards Institute (ANSI) and Institute of 
Electrical and Electronic Engineers (IEEE). 

♦ ANSI/IEEE C63.12, “Recommended Practice of Procedures for Control of 
System Electromagnetic Compatibility”, American National Standards 
Institute (ANSI) and Institute of Electrical and Electronic Engineers 
(IEEE). 
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♦ MDS-201-0004, “Electromagnetic Compatibility Standard for Medical 
Devices”, Federal Drug Agency (FDA) Regulations. 

♦ NFPA 70, “National Electric Code”, National Fire Protection Association 
(NFPA). 

♦ NFPA 70E, “Electrical Safety Requirements for Employee Workplace", 
National Fire Protection Association (NFPA). 

♦ NESC Handbook, “National Electrical Safety Code Handbook”, Edition 4, 
Institute of Electrical and Electronic Engineers (IEEE). 

♦ “United States Signals Intelligence Directive", July 1982. 

♦ NSG Instruction (NSGINST) 2450.1, NAVSECGRU “Shore Electronics 
Criteria”, Naval Security Group, Fort Meade, MD. 

♦ MIL-HDBK-1004, Military Handbook, “Preliminary Design 
Considerations”, U.S. Dept. of Defense  

♦ MIL-HDBK-419A, Military Handbook, “Grounding, Bonding and 
Shielding for Electronic Equipment and Facilities”, U.S. Dept. of Defense, 
December 1987. 

♦ MIL-STD-461E, Military Standard, “Requirements for the Control of 
Electromagnetic Interference Characteristics of Subsystems and 
Equipment”, (Replaces previous editions of 461 and 462), U.S. Dept. of 
Defense, August 1999.     

♦ DOD C-3222.5, “Electromagnetic Compatibility (EMC) Program for 
SIGINT Sites”, U.S. Dept. of Defense, July 1988. 

♦ IEEE Standard 1100-1999, “IEEE Recommended Practice for Powering 
and Grounding Electronic Equipment”, IEEE Emerald Book, 1999 

♦ FIPS Publication 94-1983, “Guideline on Electric Power for ADP 
Installations”, NTIS, U.S. Department of Commerce.  

♦ CISPR 22, “Limits and Methods of Measurement of Electromagnetic 
Disturbance Characteristics of Information Technology Equipment (ITE)”, 
1985.  

♦ IEC-61000-4-6, “Immunity to Conducted Disturbances”, International 
Engineering Consortium, 1995.  

 

The large number of handbooks, standards, and documents related to EMC is an 

indication of the importance of the topic as well as the diverse nature EMC.  No other 

topic related to the use of electricity has generated such a large list of such documents as 

well as a massive number of articles in the technical journals and other publications.   
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Many of the above publications are large and complex, and they require 

considerable technical expertise and costly equipment to comply with their requirements.  

In addition, it is not always clear which document applies to specific cases, how to handle 

situations introduced by new technology and how to resolve conflicts between the various 

publications.   

Of special interest is the recent tendency to specify the purchase of electrical and 

electronic equipment and devices based on Commercial-Off-The-Shelf (COTS) require-

ments.  In many cases this has resulted in the ability to quickly obtain new technology 

such as advanced computers and data-processing devices.  In other cases, this process has 

resulted in the introduction of severe EMI problems into government and commercial 

facilities (for example, the use of variable-speed motor drives in and around radio 

receiving sites that are purchased to COTS requirements). 

B.  DISCUSSION 

It is not feasible to provide a comprehensive review of each of the listed 

standards, handbooks, and documents in this Appendix.  This is a formidable task that 

needs to be done to highlight the inconsistencies and even some errors that are buried in 

the available documents.  Many of the listed documents are recent editions based on older 

versions that contain some information of little value and some that is quite misleading.  

Some of the documents even contain information that is technically incorrect.   

To obtain a partial understanding of these matters, partial reviews of selected 

documents are provided.  The reader must recognize that the reviews provided are very 

limited in scope and they do not provide a good overall evaluation of the applicability of 

the selected document to specific cases. Even though the author researched the above 

documents, only the most pertinent documents are described below.  
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C.  DOCUMENTS 

1. American National Standards Institute (ANSI) 63.12 

ANSI 63.12 is titled the "American National Standard Recommended Practice on 

Procedures for Control of System Electromagnetic Compatibility". Figure B.1 shows the 

conducted emission guidelines.  
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Figure B.1: ANSI C63.12 Conducted Emission Guidelines. 

The reader should note that the vertical axis (or current) is in terms of dBµΑ.  The 

decibel is used extensively in electromagnetic measurements. The “dB” is the logarithm 

of the ratio of two amplitudes. Examples of amplitudes are power, voltage, current, 

electric field units, and magnetic field units. The power ratio is: 

 ( 2 1decibel dB 10log .   P P= = )  (B-1) 

Measurements can be expressed in terms of current ratios.  In this case, replace P with 

I2R.  If the impedances (50 ohms) are equal, the ratio for current becomes: 
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 ( 2 1dB 20log  I I= )  (B.2) 

Since the EMI current measured is in terms of dBmA and dBµA, the equation 

becomes: 

 ( )2 1dBmA 20log 30  I I  = −  (B-3) 

 ( )2 1dB A 20log 60.  I I  µ = −  (B-4) 

Included in this section is the power-to-current equation associated with this 

thesis.  The power-to-current equation for 50 ohms is:  

  (B-5) dBµA dBm 107.= +

The acceptable guideline for the threshold of interference is to remain at 

approximately 3 mA or 69.5 dBmA.  The guideline is cut off at 30 MHz since conducted 

emission is generally negligible above the 30 MHz, owing to line losses.  The proposed 

guideline as shown in Figure B.1 is described by Table B.1.    

Table B.1: Common-Mode Conducted Emission Guidelines 

Frequency of Emissio Common-Mode Current  

Below 800 kHz 2400 / f (kHz) mA 

Above 800 kHz 3 mA 

2. FCC Regulations: Class B Conducted Limits   

The FCC conducted limits for FCC Class B non-intentional emitters are specified 

in FCC Section 15.107 "Conducted Limits" Paragraph a.  The limit for Class A devices 

is: “For equipment that is designed to be connected to the public utility (AC) power line, 

the radio frequency voltage that is conducted onto the AC power line on any frequency or 

frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts.” 
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Assuming measurement across a 50-ohm load, this is equivalent to 5 µA. This 

was based on 250 µV/50 Ω = 5 µΑ.  This is equivalent to 14 dBµA (20 log (I)), where I 

is in terms of µΑ. 

3. MIL-STD-461E (CE-102) Conducted Emissions 

MIL-STD-461E (CE-102) conducted emissions specification specifies 60 dBµV 

or 20 µA (or 26 dBµA) for "28 VDC" power supply leads.  The limit is reduced by 6 dB 

for 115 VAC power lines to 32 dBµA.  However, MIL-STD-461E (CE-102) only 

specifies the current limit to 10 MHz. 

MIL-STD-461E also gives the emission and susceptibility requirements for 

conducted type EMI.  Figure B.2 shows its conducted current limits from 60 Hz to 100 

kHz.    
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Figure B.2:   MIL-STD-461E, CS109 Limit 

 

4. US NAVY SNEP Documentation 

An additional published source has been documented by the US Navy Signal-to-

Noise Enhancement Program (SNEP).  Suggested limits have been established for EMI 
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current injected into ground conductors and all other related conductors of a receiving 

site.  The SNEP teams have recommended various EMI standards for equipment installed 

in data-processing and signal-receiving sites [Reference 6].  These limits are provided in 

Tables B.2 and B.3.  

 

Table B.2: Suggested Maximum Permissible Limits for  
Conducted EMI Current for Large Receiving Site. 

Frequency Range Maximum Current 

0 to 10 kHz 2 mA 

100 kHz to 100 MHz 10 µA 

 

 

Table B.3: Suggested Maximum Permissible Limits for  
Conducted EMI Current for Small Receiving Site. 

Frequency Range Maximum Current 

0 to 10 kHz 2 mA 

100 kHz to 100 MHz 2 µA 

 

These limits have been established from extensive field measurements of the 

susceptibility of HF, VHF, and UHF receiving sites to internal sources of EMI by US 

Navy Signal-to-Noise Enhancement teams.  The maximum limit between 10 kHz and 100 

kHz is established by linear extrapolation from the disparate limits.  When these limits 

were met at radio receiving facilities, no interference from internal sources of EMI was 

encountered. 

While suggested maximum levels of EMI current have been provided for 

receiving sites, similar levels for data-processing sites have not yet been established.  
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APPENDIX C. DESCRIPTION OF UPS SYSTEMS 

A. GENERAL 

An Uninterruptible Power Supply (UPS) is used to provide electric power to 

critical loads when utility power is interrupted, removed, or fails.  Figure C.1 shows a 

diagram of a typical single-module UPS system.  A battery is trickle charged from the 

AC-to-DC converter, usually with a full-wave rectifier.  The battery drives an inverter 

using transistors for lower-power units and thyristors or silicone-controlled rectifiers 

(SCRs) as solid-state switchers for higher-power units.  The details and configurations of 

UPS systems, their performance and capacity, and their physical configuration vary 

somewhat from one manufacturer to another, but all provide electrical power to loads for 

a short period of time when their input power fails.  UPS units also provide protection 

against a number of other power problems including surges, sags, transients, dropouts 

and brownouts as well as total power failures.  The duration of this protection is 

dependent on a combination of battery capacity and load.  For times exceeding the 

protection provided by an UPS, and where operation is critical, standby diesel engine-

driven generators must be provided. 
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Figure C.1: Typical On-Line Single-Phase Single-Module UPS Diagram. 
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B. UPS COMPONENTS 

An UPS is a device used to provide continuous, acceptable power to its load 

regardless of the input power supplied.  UPS systems come in various types and sizes.  

An UPS is used to provide clean, conditioned, and continuous power to critical electronic 

equipment. It can protect electronic equipment from most detrimental conditions 

experienced on power systems. The UPS will provide power to the load including an 

event causing a total outage. The UPS supplied power will last only as long as the 

systems battery bank will permit, typically 10 minutes.  These systems are commonly 

used to protect computer systems from short-term outages such as those experienced 

during stormy conditions or other inclement weather situations.  

Figure C.1 depicts the major components of a typical single-phase single-module 

UPS system.  The UPS systems tested for this thesis are of a type shown in Figure C.1.  

They had a single input with a maintenance bypass section.  The components of this UPS 

system contained the following sections:  

♦ Rectifier or Charging Unit - takes the utility AC power and converts it to DC 
and also charges the batteries.  

♦ Inverter - takes the DC from the rectifier or batteries and converts it to AC for 
use in the computer system. 

♦ Battery Bank - supplies DC power for the inverter in the event of 
unacceptable AC input.  

 

C. UPS STANDARD 

While no specific government or industry standard exists for the specification of 

an UPS system, two sources provide useful information to aid in their design, 

procurement and use. 

Underwriters Laboratories (UL) Inc. publishes Standards for Safety documents. 

Their document UL 1778 titled "Uninterruptible Power Supply Equipment", provides 

recommendations about construction, performance, rating, marking, and testing of UPS 

systems.  The following sections in UL 1776 have applicable references to this thesis: 
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♦ Section 42: The leakage current that is accessible to the user shall not be more 
than 0.75 milliampere. 

 

♦ Section 42.1a: Leakage current shall not exceed 5.0 milliamperes.  

 

♦ Section 48.2: Testing criteria on UPS systems that have EMI filter capacitors 
installed. 

 

♦ Section 74.1.2.j: For an UPS to have circuit filtering to meet EMC/EMI 
regulations. 

 

The Federal Communications Commission (FCC) specifies EMI limitations for 

electronic and electrical devices under Part 15 of their regulations. They provide 

maximum permissible levels of EMI voltage on the conductors supplying power to 

electronic devices intended for use in industrial and residential applications. The 

maximum permissible levels for industrial (Class A level) use are much higher than for 

residential (Class B level) use. The FCC specified limitations are often used for the 

procurement of COTS UPS systems by the government.  No mention is made in the FCC 

documentation of the use of UPS systems at radio-receiving or data-processing facilities.    
  

D. UPS INVERTER SECTION 

Most inverters in UPS products employ solid-state switching techniques to 

convert the DC power to AC power.  Some of the techniques employed in the conversion 

are square-wave, stepped-wave or pulse-width modulation.  Each technique has 

beneficial qualities, but each has limitations.  The detrimental aspects of the switching 

actions of an inverter are output distortion of the voltage waveform, limitations in 

transient response, efficiency, and the generation of EMI.  This aspect of an UPS 

converter should be taken into account when selecting a unit for installation in a facility.   
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E. UPS HAZARDOUS WARNING LABELS 

Figures C.2 and C.3 show EMI/RFI warning labels found on the external surface 

of the case of two UPS systems installed at two different receiving sites.  These labels are 

also reproduced in the manuals of both systems.  Such warnings are required in the 

United States on all commercial electronic and electrical equipment that generates 

EMI/RFI.  Both of the UPS systems containing the warnings were purchased as COTS 

devices in accordance with FCC Class A requirements. This is a common procurement 

procedure since UPS systems meeting the stricter Class B requirements are seldom 

specified during procurement, and they are seldom available from manufacturers as 

COTS devices. 

WARNING:  This equipment generates, uses, and can radiate radio frequency 
and if not installed and used in accordance with instructions may cause interference 
to radio communications.  It has been tested and found to comply with the limits for 
Class A computing devices pursuant to Subpart J or Part 15 of FCC Rules, which 
are designed to provide reasonable protection against such interference when 
operated in a commercial environment.  Operation of this equipment in a residential 
area is likely to cause interference in which case the user at his own expense will be 
required to take whatever measures may be necessary to correct such interference. 

CAUTION: 
Always be aware that hazardous voltages may be present within the UPS even 

when the system is not operating. 

 
Figure C.2: LABEL ON AN UPS INSTALLED IN A RECEIVING SITE1 

 
 

This equipment complies with the requirements in Part 15 of FCC Rules for a Class 
A computing device. Operation of this equipment in a residential area may cause 
unacceptable interference to radio and TV reception requiring the operator to take 
whatever steps are necessary to correct the interference. 

 
Figure C.3: Another UPS Warning Label2 

 

                                                           
1  This label was reproduced from a photograph taken from a UPS located at NSGA Northwest during a 
visit to the site in April 1997.  The photograph is located in field notebooks for that visit. 
2   This label was reproduced from a photograph taken from an UPS located at Detachment L, Field Site 
Korea during a visit to that site in October 1999.  The photograph is located in field notebooks for that visit. 
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The warning labels clearly indicate that EMI/RFI can be expected if a Class A 

UPS is located at a facility containing radio receivers.  This should be sufficient warning; 

the additional steps will probably be required to ensure EMI/RFI problems are not 

encountered after a Class A UPS is installed and becomes operational.  Unfortunately, 

very costly corrective actions to the UPS must be implemented to reduce EMI/RFI to 

harmless levels after the installation. 

No mention is made in the warning labels of possible adverse affects of EMI 

generated by a Class A UPS system to data-processing devices, the possible 

contamination of signals carried by wired local area networks (LANs) or other adverse 

effects to electrical or electronic devices. 

The procurement and installation of Class A UPS systems require attention during 

the design stages of a facility and prior to procurement.  This is especially the case for 

UPS systems intended for use in or near facilities containing HF, VHF and UHF radio 

receivers.  Class A devices of any kind should not be used at or near receiving facilities 

without first ensuring that problems will not be encountered or all Class A devices are 

modified to reduce RFI/EMI to harmless levels.     
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         APPENDIX D.  CALIBRATION 

A. GENERAL 

Normal performance tests and system calibrations were made at the start of each 

set of measurements or at any time a significant change was made in the instrumentation.  

Of special concern was the transfer of amplitude calibration scales from the HP 141 

Spectrum Analyzer to the ELF Model 7200B 3-Axis Display.  In addition each current 

probe was calibrated with test fixtures specifically designed for that purpose. 

B. TIME-AXIS CALIBRATION OF THE 3-AXIS DISPLAY 

The duration of the time axis of the time-history views is dependent on the scan 

time of the spectrum analyzer and the blanking or dead time at the end of each scan.  The 

time axis can be calculated from the following formula: 

 ( )  (D-1) 60t s bT = t  + t ⋅

where: 

 Tt  is the duration of the time axis in seconds, 

 ts  is the total time of each scan of the spectrum analyzer in seconds, and 

 tb  is the blanking or dead time between each scan in seconds. 

An initial value of ts can be obtained from the scan-time control on the spectrum 

analyzer.  Additionally, this can be measured with an oscilloscope or a counter to obtain 

more accurate values.  The value of tb  is not provided by the manufacturer, and it must be 

measured with an oscilloscope or a counter.  The value of tb varies from analyzer to 

analyzer and with the setting of the scan-time control.   

Table D-1 shows a typical calibration chart summarizing the parameters needed to 

establish the time-axis values when the scan-time of the spectrum analyzer is operated in 

the auto-sync mode.   
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Table D-2 shows a typical calibration chart summarizing the parameters needed to 

establish the time-axis values when the scan-time of the spectrum analyzer is operated in 

the line-sync mode. 

 

Table D-1: Time Scale Calibration, Auto Sync 

Scan Time  
(in ms) 

Measured Scan Time 
(in ms) 

Blanking Time 
(in ms) 

Time Axis 
(in sec) 

2 1.9 0.29 0.13 
5 4.3 0.30 0.28 

10 9.75 5.0 0.89 
20 20 5.0 1.5 
50 45 6.0 3.1 
100 105 85 11.4 
200 200 85 17.1 
500 450 85 32.1 

1000 1025 85 66.7 
2000 2050 675 163 
5000 4600 688 317 

 

 

 

Table D-2:  Time Scale Calibration, Line Sync 

Scan Time  
(in ms) 

Measured Scan Time 
(in ms) 

Blanking Time 
(in ms) 

Time Axis 
(in sec) 

2 2.45 15 1.0 
5 4.5 12.5 1.0 

10 10 6.8 1.0 
20 20 13 2.0 
50 45 22 4.0 

100 105 95 12 
200 200 100 18 
500 450 90 32.4 
1000 1025 95 67 
2000 2050 937 179 
5000 4600 687 317 
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C. AMPLITUDE CALIBRATION 

The amplitude calibration of the spectrum analyzer must be transferred to the 

time-history display.  The amplitude calibration levels of the spectrum analyzer are 

recorded on the time-history display in 10-dB steps starting with the full trace setting on 

the analyzer and proceeding downward in steps.  A photograph is then made of the 

amplitude traces on the time-history display.  It is important that the same camera used to 

photograph the calibration traces is used for all subsequent data-recording work.  This 

avoids camera-to-camera variations. 

Figure D.1 shows an example of an amplitude-calibration photograph.  The levels 

shown on the original photograph can be transferred to any example of measured data to 

obtain amplitude scales in mA or µA as needed.  Since the dynamic range of the 

measured data was very large, it was necessary to use a logarithmic amplitude scale to 

portray the full range of EMI current.  

 
Figure D.1  Amplitude Calibration 
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D.  BANDWIDTH CALIBRATION 

EMI produced from the solid-state switches in an electronic UPS is highly 

impulsive, resulting in spectral components of EMI that are much wider than the 

bandwidth of the measurement process available from a spectrum analyzer.  Because of 

this, the amplitude of impulsive noise is a function of the measurement bandwidth.  A 

calibration curve permitting the conversion of impulse amplitude from the measured 

value to other bandwidth values is provided to aid in the analysis and application of the 

data.  Figure D.2 provides the curve used to aid in the evaluation of the data obtained and 

shown in this document.  A reference curve to scale changes in the amplitude of time-

stable gaussian noise with bandwidth is also provided. 
 

 
Figure D.2 Bandwidth Scaling Curve 

 
 
 

 

E. PROBE CALIBRATION 

The two current probes used to measure EMI current levels were flat in frequency 

response over their normal operating frequency range.  A Tektronix Model 6021 Current 

Probe interfaced with a Tektronix Model CT-4 Current Probe was used to measure EMI 
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current at frequencies below about 100 kHz.  While the specified frequency range of this 

combination of probes extended to much higher frequencies (up to 50 MHz), the higher 

portion of its range could not be used.  The limited dynamic range of the instrumentation 

(about 80 dB) prevented the measurement of low-level spectral components of current 

above a few tens of kHz.  Nevertheless, the combination of the P6021/CT-4 probes 

provided a means to understand harmonic content of the input and output power of UPS 

systems and the spectral components of low-frequency EMI current.  It was necessary to 

provide a means to convert the probe readings into amplitude scales in mA or µA on the 

recorded data.  The next charts (Figures D.3 and D.4) are calibration curves associated 

with the current transformer (CT) used for the testing. The CT-4/P6021 current 

transformer was used for the low-frequency test setup and F-70 CT was used in a high-

frequency test setup.  

The response of the P6021/CT-4 combination of probes falls at frequencies below 

200 Hz, and a calibration curve is required to obtain compensation values of current 

below this value.  Figure D.3 shows the calibration curve used to understand low-

frequency current levels. 

 
Figure D.3 CT-4/P6021 Probe Calibration 
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A Fischer Model F-70 Current probe was used to measure EMI current at 

frequencies above 100 kHz.  Its low-frequency response diminishes below 100 kHz and 

allows the measurement of high EMI current levels at higher frequencies without concern 

for the high levels of low-frequency current flowing on conductors.  The response of the 

probe was flat from 100 kHz up to 100 MHz.  This permitted the use of a single 

amplitude scale on the data describing high-frequency EMI current levels. 

A calibration curve was used to extend the amplitude response of the F-70 probe 

to frequencies below 100 kHz.  This provided a means to extend the frequency range of 

the F-70 probe downward into the useful frequency range of the CT-4/P6021 probe for 

comparative measurements.  Figure D.4 shows the calibration curve for the probe used 

during these measurements. 

 

 
Figure D.4 F-70 Probe Calibration Curve 
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APPENDIX E. POWER LINE FILTERS 

 

A. INTRODUCTION 

The information in this section is limited to a description of filters composed of 

discrete components; usually capacitors, inductors, and resistors.  This is the type 

normally used to correct EMI problems associated with the power conductors of 

electronic equipment.  Four main types of such filters can be obtained which are low-

pass, high-pass, band-pass, and band-trap.  For the purposes of this thesis, the discussion 

will be limited to the low-pass type which allows alternating electrical power to be 

provided to an uninterruptible power supply (UPS) while attenuating higher-frequency 

EMI being conducted out of the UPS.  Similarly, a second filter can be provided on the 

output conductors to attenuate high-frequency EMI while allowing low-frequency 

electrical power to be applied to a load.  When properly installed at the surface of the 

conducting case of an UPS, low-pass filters can be highly effective in reducing conducted 

EMI current on entry and exit power conductors to harmless levels.   

A number of references provide detailed information about the detailed design of 

filters, and this readily available information is not duplicated in this appendix.  

Fortunately, a variety of low-pass filters are available as standard catalog items up to 

modest power-handling ratings.  Two types were considered for use in the tests of the 

UPS described in this thesis.  The first was the standard “Pi” configuration shown in 

Figure E.1.  
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Figure E.1: “Pi” Configuration Filter 

 
The “Pi” configuration provides low attenuation to all frequencies below its cut-

off frequency and a high transfer impedance to all spectral components above the cutoff 

frequency.  In addition, it provides a low input and output impedance to all spectral 

components above the cutoff frequency.   

The second type considered was the standard “T” configuration shown in Figure 

E.2.  This type also provides low loss to spectral components below its cutoff frequency, 

and it also provides high transfer impedance to all spectral components above its cutoff 

frequency.  It differs from the “Pi” configuration in that it provides high input and output 

impedance to all spectral components above the cutoff frequency.   
 

 

Figure E.2: “T” Configuration Filter 
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Transfer impedance, Zt,  is defined as: 

 in

out

t
EZ  =  
I

 (E-1) 

where:  

Ein is the voltage of a spectral component of EMI produced by the UPS, and  

Iout is the current of the selected component of EMI on the outside conductors. 

The reason both configurations of filters were considered is that some switching 

devices (especially motor controllers using similar switching techniques) used for the 

conversion of electric power are sensitive to the above-band impedance of filters on the 

input and/or output conductors.  The type of UPS chosen for the work described in this 

thesis was insensitive to such impedance problems which allowed either type of low-pass 

filter to be used.  The standard “Pi” configuration was chosen simply because it was 

readily available at low cost. 

One additional consideration was used in the selection and use of filters.  This is 

the physical configuration of the green-wire ground connection to the input and output 

sides of a filter.  It is necessary to select a filter case configuration that provides a 

conducting path for EMI current flowing on the green-wire ground conductor to return to 

its source within the UPS case.  This was accomplished by the selection of a standard and 

inexpensive COTS filter using a metal case that complied with the electrical 

configuration shown in Figure 3.19 of the main body of the thesis.  This configuration 

provides low transfer impedance to low frequencies to meet the safety requirement of the 

NEC while providing high transfer impedance to high frequencies.  The high transfer 

impedance at high frequencies is obtained from the shielding of the metal case housing 

the UPS. 
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Two additional terms are used to evaluate filter effectiveness.  They are common-

mode (CM) and differential mode (DM) EMI.  CM EMI flows on both the white and 

black conductors of a 120-V power source, and CM EMI voltage is measured from either 

conductor to ground.  DM EMI flows in one direction on the white wire and in the other 

direction on the black wire.  DM voltage is measured between the black and white 

conductors.  Both CM and DM modes are considered in this thesis. 

B.    FILTER CHARACTERISTICS 

       1. General 

In order to select an appropriate EMI power-line filter, the following are some of 

the characteristics that a user must be concerned with: type, application, performance, 

agency approvals, insertion loss range, current ratings, temperature range and voltage 

range. The EMI power-line filter is of a low-pass type that is used on electronic 

equipment. The filter's function is to block the flow of EMI current while passing a 

desired 60-Hz current. 

 2. Insertion Loss 

Insertion loss (IL) is a measure for effectiveness of a filter. It is defined as the 

ratio of voltage (E1) across the phase-to-ground, with a filter in the circuit at a given 

frequency, while voltage (E2) across the phase-to-ground contains no filter in the circuit 

at the same frequency. Since insertion loss is dependent on the source and load 

impedance in which a filter is to be used, IL measurements are defined for a matched 50-

ohm system.  The IL is measured in decibels (dB) and defined as: 

 ( ) 1

2

IL dB 20log .E
E

 
=  

 
 (E-2) 
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The insertion filter loss equation is also expressed in terms of number of poles or 

stages of filter: 

 ( )
2

1

2

IL dB 10log 1
N

f    
f

  
= + 
   

  (E-2) 

where  f1 = interfering EMI frequency, 

f2 = cutoff frequency of filter, and 

N = number of poles or stages of filter. 

The number of stages determines the attenuation slope of the filter's characteristic 

curve. If the filter has 2 stages, then the slope of the curve is 40 dB per decade.    

C. FILTER STANDARDS 

The following military and commercial standards documents associated with 

filters and insertion loss measurements are: 

• MIL-F-15733: Filters and Capacitors, Radio Frequency Interference 

• MIL-F-28861: Filters and Capacitors, Radio Frequency Interference / 
Electromagnetic Interference Suppression 

• MIL-STD-220: Method of Insertion Loss Measurement   

• ANSI C63.13: American National Standard Guide on the Application and 
Evaluation of EMI Power-Line Filters for Commercial Use  

 

When specifying in accordance with MIL-STD-220 the minimum insertion loss 

shall be accordance with Table E.1. 

Table E.1: MIL-STD-220 Insertion Loss Filter Characteristic 

Frequency 15 kHz 100 kHz 500 kHz 1 MHz 100 MHz 1 GHz 
AC Insertion 

Loss (dB) 
10 42 70 70 70 70 
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D. INPUT FILTER 

A Delta power-line EMI filter was used for purposes of this research, as the filter 

is a common "off-the-shelf" item and available from the SNEP laboratory.  The 

schematic and characteristics are shown in Figure E.3.  The insertion loss diagram (for a 

DELTA ELECTRONICS, 10DRDG3, EMI FILTER) was obtained from the 

manufacturer and is shown in Figure E.4.  

E. OUTPUT FILTER 

The output filter used for thesis research was a Corcom EMI filter Model 6VSK7. 

It is a 6-amp, 120-volt, 60-Hz, single stage filter. 

F. INSTALLATION CRITERIA 

The proper installation of a filter is critical to achieve successful filtering of EMI 

generated by an UPS or preventing EMI from external sources from affecting the 

operation of an UPS.  The filter must provide an electrical barrier to prevent harmful 

spectral components of EMI from escaping or entering the UPS.  To accomplish this, the 

filter must be installed on the metal case of an UPS and in accordance with the principles 

shown in Figure 3.19 of the main body of this thesis.  Installation at other locations (i.e., 

in the interior of an UPS or externally on the power conductors of an UPS) will result in 

the significant loss of effectiveness and the use of filters at such locations is inadvisable 

and not recommended.  
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Manufacturer: Delta Electronics, Inc.  
Model Number: 10DRCG3 
DR Series, High Performance Filter 
Two Stage Filter 
Characteristics: 115v, 60 Hz, 40 degrees C, 10 amps 
Filter is used in suppressing both line-to-line and line-to-ground noise. 
All parts are UL recognized, CSA certified, and VDE approved 
 
Specifications: 
1) Maximum leakage current (line-to-ground) = 0.25 mA 
2) Hipot rating (one minute): 
             line-to-ground = 2250 VDC 
             line-to-line = 1450 VDC 
3) Operating frequency = 50/60 Hz 
4) Rated voltage = 115/250 VAC  
 
Where: 
R= 2.2 MΩ 
C1= .22 µF 
C2= .22 µF 
C3= .22 µF 
Cy=3300 pF 
L1, L2= 1 mH 
 
 

 
Figure E.3:  The Schematic and Characteristics of the Delta 10DRCG3 Filter 
(Technical Product Catalog, Delta High Performance Filters, Delta Inc., Page 6-8, 

Reference 7) 
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Figure E.4: Insertion Loss Diagram for the Input UPS Filter 
(Technical Product Catalog, Delta High Performance Filters, Delta Inc., Page 6-8, 

Reference 7) 

  

When selecting an EMI power-line filter, several steps are recommended.  They 

are: 

1. If a device is suspected of generating harmful levels of EMI, measure the EMI 
current on all conductors entering and exiting the device. Ascertain if any 
spectral component of current generated by the device appears to be abnormal. 

2. Compare the measured levels of EMI current to emission limit criteria 
provided by government publications or other organizations. 

3. Determine the attenuation required to reduce EMI current levels to acceptable 
limits. 

4. Select a filter that provides sufficient attenuation and install it in accordance 
with the principles provided in this thesis. 
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G. FILTER MANUFACTURERS 
 

Below in Table E.2 are several filter manufacturers from EEM 2001 (Reference 

8). The EEM is well known electronic equipment source of technical information. 

Information is also available from the EEM 2001 (http://eemonline.com) on the World 

Wide Web. 

Table E.2: Power Line Filter Manufacturers 

  
AEROVOX 
CORCOM, INC. 
CURTIS INDUSTRIES 
DEARBORN ELECTRONICS, INC. 
DELTA ELECTRONICS, INC. 
EMISSION CONTROL LTD. 
FILTERS CONCEPTS, INC. 
LINDGREN RF ENCLOSURES, INC. 
MECHATRONICS, INC. 
METUCHEN CAPACITORS, INC. 
OKAYA ELECTRIC AMERICA 
POWER DYNAMICS, INC. 
RFI (DEL ELECTRONICS) 
SAE POWER, INC. 
SCHAFFNER EMC 
SCHURTER, INC. 
SPECTRUM CONTROL INC. 
TAMURA CORP. 
TEXAS SPRECTRUM ELECTRONICS, INC. 
TRI-MAG INC. 
WICKMANN USA 
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APPENDIX F. PROPOSED SPECIFICATION 

 
Section 16611 from the MASTERSPEC DRAWING COORDINATION 

document issued by the American Institute of Architects (AIA) and dated December 2000 

provides an overall specification for an Uninterruptible Power Supply (UPS).  The 

specification is directed toward the purchase and installation of a single-phase, on-line, 

static-type UPS.   

This particular specification does not consider the possible impact of EMI 

generated by an UPS on other electronic systems and devices, but users of UPS systems 

in such facilities can modify this specification to meet their unique and special 

requirements.  Suggested changes in this specification are listed in bold.  These changes 

are directed at the use of UPS systems in radio-receiving and sensitive data-processing 

facilities.  Of particular concern is the elimination of harmful levels of UPS generated 

EMI on radio signal reception and on the operation of sensitive data-processing systems. 
______________________________________________________________ 

SECTION 16611 - UNINTERRUPTIBLE POWER SUPPLY 
 
 
PART 1 - GENERAL 
 
 
1.1 RELATED DOCUMENTS 

 
A. Drawings and general provisions of the Contract, including General and 

Supplementary Conditions and Division 1 Specification Sections, apply to this 
Section. 

 
 

1.2 SUMMARY 
 
A. This Section includes 1-phase, on-line, static-type, uninterruptible power supply 

(UPS) systems, complete with battery and battery circuit breaker. 
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1.3 DEFINITIONS 
 

A.  UPS:  Uninterruptible power supplies that automatically provide power, without 
delay or transients, during any period when normal power supply is incapable of 
performing acceptably. 

 
B.  THD:  Total harmonic distortion. 
 
C.  EMI:  Electromagnetic Interference.  EMI is the impairment of a desired 

electromagnetic signal by an electromagnetic disturbance, i.e.,  electrical 
noise. This  undesirable electromagnetic emission or any electrical 
disturbance, man-made or natural, which causes any undesirable response, 
malfunctioning or degradation in the performance of electrical equipment 

 
D.  EMI filter: An EMI filter is a passive electronic device used to suppress 

conducted interference present on any power or signal line.  It may be used 
to suppress interferences generated by the device.  Most EMI filters include 
electronic components to suppress both common- and differential-mode 
interference.  

 
 

1.4 SUBMITTALS 
 

A. Product Data:  Include data on features, components, ratings, and performance for 
each product specified in this Section. 

 
B. Shop Drawings:  Detail fabrication, internal and interconnecting wiring, and 

installation of UPS system.  Include dimensioned plan, elevation views, and 
details of control panels.  Show access and clearance requirements.  Differentiate 
between field-installed and factory-installed wiring and components. 

 
C. Product Certificates:  Signed by manufacturers of UPS systems certifying that the 

products furnished comply with requirements. 
 
D. Qualification Data:  For firms and persons specified in the "Quality Assurance" 

Article. 
 
E. Factory Test Reports:  Comply with specified requirements.  Include conducted 

noise data over the frequency range of 1 kHz to 50 MHz. 
 
F. Field Test Reports:  For tests specified in Part 3. 
 
G. Maintenance Data:  For system and products to include in the maintenance 

manuals specified in Division 1.  Include the following: 
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1. Lists of spare parts and replacement components recommended to be stored at 
the project site for ready access.  

2. Detailed operating instructions covering operation under both normal and 
abnormal conditions. 

 
H. Warranties:  Special warranties specified in this Section. 
 
 

1.5 QUALITY ASSURANCE 
 

A. Testing Agency Qualifications:  An independent testing agency with the 
experience and capability to conduct the testing indicated without delaying the 
work, as documented according to OSHA criteria for accreditation of testing 
laboratories, Title 29, Part 1907; or a full member company of the International 
Electrical Testing Association. 

 
1. Testing Agency's Field Supervisor:  Person currently certified by the 

International Electrical Testing Association or the National Institute for 
Certification in Engineering Technologies, to supervise on-site testing 
specified in Part 3. 

 
B. Comply with NFPA 70. 
 
C. Source Limitations:  Obtain UPS, including components, from a single 

manufacturer with responsibility for entire system. 
 
D. Listing and Labeling:  Provide UPS specified in this Section that are listed and 

labeled as a factory-assembled unit. 
 
E. Listing and Labeling:  Provide UPS specified in this Section that are listed and 

labeled for use in computer rooms.  Comply with NFPA 75. 
 

1.  The Terms "Listed" and "Labeled":  As defined in the National Electrical 
Code, Article 100. 

2.  Listing and Labeling Agency Qualifications:  A "Nationally Recognized 
Testing Laboratory" as defined in OSHA Regulation 1910.7. 

 
F. Comply with UL 1778. 
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1.6 DELIVERY, STORAGE, AND HANDLING 
 

A. Deliver equipment in fully enclosed vehicles after specified environmental 
conditions have been permanently established in spaces where equipment is to be 
placed. 

 
B. Store equipment in spaces with environments that are controlled within 

manufacturer's ambient temperature and humidity tolerances for nonoperating 
equipment. 

 
1.7 WARRANTY 
 

A. General Warranty:  The special warranty specified in this Article shall not deprive 
the Government of other rights the Government may have under other provisions 
of the Contract Documents and shall be in addition to, and run concurrent with, 
other warranties made by the Contractor under requirements of the Contract 
Documents. 

 
B. Special Warranty for Batteries:  A written warranty, signed by manufacturer and 

principal Installer, agreeing to replace UPS system storage batteries that fail in 
materials or workmanship within the specified warranty period. 
1.   Special Warranty Period for Batteries:  10 years from date of Substantial 

Completion.  A full warranty applies to the first year of the period, and a 
prorated warranty applies to the last 9 years. 

 
 

1.8 EXTRA MATERIALS 
 

A. Furnish extra materials described below that match products installed, are 
packaged with protective covering for storage, and are identified with labels 
describing contents.  Deliver extra materials to Government. 

 
1. Fuses:  1 for every 10 of each type and rating, but not less than 1 of each. 
2. Cabinet Ventilation Filters:  One complete set. 
 
 

PART 2  PRODUCTS 
 
 
2.1 MANUFACTURERS 
 

A. Available Manufacturers:  Subject to compliance with requirements, 
manufacturers offering products that may be incorporated into the Work include, 
but are not limited to, the following: 
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1. Best Power Technology, Inc. 
2. Computer Power, Inc. 
3. Controlled Power Co. 
4. Deltec Corp. 
5. Exide Electronics. 
6. HDR Power Systems, Inc. 
7. International Computer Power. 
8. International Power Machines Corp. 
9. Liebert Corp. 
10. Mitsubishi Electronics America, Inc. 
11. Pacific Power Source Corp. 
12. Square D Co.; EPE Technologies, Inc. Subsidiary. 
13. Toshiba International Corp. 
 
 

2.2 MANUFACTURED UNITS 
 

A. Description:  Electronic components and switching devices are housed in one or 
more metal cabinets, with batteries rack mounted separately.  Automatic system 
operating functions include the following: 

 
1. Normal Conditions:  Supply the load with power flowing from the normal 

AC power input terminals, through the rectifier/battery charger and inverter, 
with the battery connected in parallel with the rectifier output. 

2. Abnormal Supply Conditions:  When the normal AC supply deviates from 
specified voltage, waveform, or frequency limits, the battery supplies energy 
to maintain constant inverter output to the load. 

3. When normal power fails, energy supplied by the battery through the inverter 
continues supply to the load without switching or disturbance. 

4. When power is restored at the normal supply terminals of the system, the 
rectifier/battery charger supplies power to the load through the inverter and 
simultaneously recharges the battery.  Synchronize the inverter with the 
external source before transferring the load. 

5. When the battery becomes discharged and normal supply is available, charge 
the battery by the rectifier/battery charger.  On reaching full charge, shift the 
rectifier/battery charger to a float-charge mode. 

6. When any element of the UPS system fails and power is available at the 
normal supply terminals of the system, the static bypass transfer switch 
switches the load to the normal source with less than one-quarter-cycle 
interruption of supply. 

7. If a fault occurs in the system supplied by the UPS and current flows in 
excess of the overload rating of the UPS system, the static bypass transfer 
switch operates to bypass the fault current to the normal supply circuit of the 
UPS system for fault clearing. 
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8. When the fault has cleared, the static bypass transfer switch returns the load 
to the UPS system. 

 
B. Functional Description of Manual Operation:  Manual operating functions include 

the following: 
1. Turning the inverter off causes the load to be transferred by the static bypass 

transfer switch directly to the normal AC input source without interruption. 
2. Turning the inverter on causes the static bypass transfer switch to transfer the 

load to the inverter. 
 

C. Maintenance Bypass/Isolation Switch:  Interlocked so UPS cannot be operated 
unless the static bypass transfer switch is in the bypass mode.  The device has 3 
settings that produce the following conditions without interrupting supply to the 
load during switching: 

 
1. Full Isolation:  Load is supplied bypassing UPS.  UPS AC supply input, static 

bypass transfer switch, and UPS load terminals are completely disconnected 
from external circuits. 

2. Maintenance Bypass:  Load is supplied bypassing UPS.  UPS AC supply 
terminals are energized to permit operational checking, but system load 
terminals are isolated from the load. 

3. Normal:  UPS AC supply terminals are energized and the load is being 
supplied through either the static bypass transfer switch or the UPS rectifier 
and inverter. 

 
 

2.3 SYSTEM SERVICE CONDITIONS 
 

A. Environmental Conditions:  Operate continuously in the following environmental 
conditions without mechanical or electrical damage or degradation of operating 
capability: 

 
1. Ambient Temperature:  0 to 40 deg C. 
2. Relative Humidity:  0 to 95 percent, noncondensing. 
3. Altitude:  Sea level to 4000 feet (1220 m). 
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2.4 SYSTEM CHARACTERISTICS 
 

A. Minimum Duration of Supply:  15 minutes, if rated full load is being supplied 
solely from the battery. 

 
B. System Performance When Supplied from Battery:  Performance under steady-

state and transient-load conditions remains within specified tolerances throughout 
minimum duration of supply from battery specified. 

 
C. Input Voltage and Frequency Tolerance:  System steady-state and transient output 

performance remains within specified tolerances when steady-state AC input 
voltage varies plus or minus 10 percent from nominal voltage; when steady-state 
input frequency varies plus or minus 5 percent from nominal voltage; and when 
the THD of input voltage is 15 percent, and the largest single harmonic 
component is a minimum of 5 percent of the fundamental value. 

 
 

2.5 COMPATIBILITY WITH LOAD 
 

A. Operate within specified performance tolerances, supply type of distribution system 
indicated, and serve rated load comprised of various load elements.  Load elements 
provide an overall load profile with the following characteristics: 

 
1. Aggregate Load for Single-Phase Electronic Equipment with Switch-Mode 

Power Supplies, served at 120 or 208 V:  55 percent of UPS capacity. 
2. Aggregate Load for Polyphase Electronic Equipment with Switch-Mode 

Power Supplies, served at 208 V:  5 percent of UPS capacity. 
3. Aggregate Load for Fluorescent Lights with Electronic Ballasts having load-

current rated at 15 Percent THD:  5 percent of UPS capacity. 
4. Aggregate Load for Motors, 3-Phase-Induction Type, Random Across-the-

Line Starting:  15 percent of UPS capacity.  Largest individual motor full-load 
kVA is 10 percent of UPS capacity. 

5. Aggregate Load for Motors, Single-Phase, Capacitor Start, Induction Run:  5 
percent of UPS capacity.  Motors operate continuously. 

6. Aggregate Load for High-Intensity-Discharge Lighting (High-Pressure-
Sodium Type, Photoelectrically Controlled):  5 percent of UPS capacity. 

7. Miscellaneous Linear Loads:  10 percent of UPS capacity. 
 
 

2.6 PERFORMANCE EFFICIENCIES 
 

A. Overall system efficiency, when operated within indicated nominal input- and 
output-voltage and frequency limits, is within the following minimums (choose 
the size for your application): 
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1. 30-kVA and Smaller Systems:  65 percent at 100 percent load, 60 percent at 
75 percent load, and 55 percent at 50 percent load. 

2. 37.5- to 74-kVA Systems:  78 percent at 100 percent load, 77 percent at 75 
percent load, and 75 percent at 50 percent load. 

3. 75- to 124-kVA Systems:  84 percent at 100 percent load, 83 percent at 75 
percent load, and 82 percent at 50 percent load. 

4. 125- to 224-kVA Systems:  88 percent at 100 percent load, 87 percent at 75 
percent load, and 86 percent at 50 percent load. 

5. 225-kVA and Larger Systems:  90 percent at 100 percent load, 89 percent at 75 
percent load, and 88 percent at 50 percent load. 

 
B. Maximum Acoustical Noise:  58 dB, "A" weighting, emanating from the system 

under any condition of normal operation, measured 36 inches (900 mm) from the 
nearest surface of the enclosure. 

 
C. Maximum Energizing Inrush:  6 times the full-load current. 
 
D. Maximum Output-Voltage Regulation for loads up to 50 percent unbalanced:  

plus or minus 2 percent of the full range of battery voltage. 
 
E. Output Frequency:  60 Hz, plus or minus 0.5 percent of the full range of input 

voltage, load, and battery voltage. 
 
F. Maximum Harmonic Content of Output-Voltage Waveform:  5 percent RMS total 

and 3 percent RMS for any single harmonic for rated full linear load more than 
the full range of battery condition and input voltage and frequency. 

 
G. Overload Capacity of System at Rated Voltage:  125 percent of full-load rating 

for 10 minutes and 150 percent for 10 seconds. 
 
H. Maximum Output-Voltage Transient Excursions from Rated Value:  For the 

following instantaneous load changes, stated as percentages of rated full load, 
voltage shall remain within the stated percentages of rated value and recover to 
within plus or minus 2 percent of that value within 100 ms: 

 
1. 50 Percent:  Plus or minus 8 percent. 
2. 100 Percent:  Plus or minus 10 percent. 
3. Loss of AC Input Power:  Plus or minus 5 percent. 
4. Restoration of Input Power:  Plus or minus 5 percent. 
 

 
I. Normal mode (Common mode) EMI noise attenuation range over 10 kHz to 

50 MHz range: 60−80 dB.  If this attenuation is not attainable, EMI filters at 
the input and output conductors shall be installed into the UPS equipment.   
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NOTE : When used in HF and VHF radio receiving sites and sensitive 
data-processing facilities, all conductors entering and exiting the UPS 
(including AC, DC, and ground conductors) must meet one of the 
following EMI requirements: 

 
 1. FCC Class B requirements. 
 2. The conducted current limitations of Section of MIL-STD- 461. 

3. The conducted current limitations provided by the SNEP program. 
 

If these limitations are not met by a standard model of an UPS, EMI 
filters must be added to the input and output power conductors to 
meet the stated conducted current limitations over the frequency 
range of 10 kHz to 50 MHz.   

 
 
2.7 SYSTEM COMPONENTS, GENERAL 
 

A. Description:  Solid-state devices using hermetically sealed semiconductor 
elements.  Devices include rectifier/battery charger, inverter, static bypass transfer 
switch, and system controls. 

 
B. Enclosure:  Provide separate cabinets or separate compartments of enclosures for 

major components such as static bypass transfer switch, rectifier, battery, inverter, 
and maintenance bypass. 

 
C. Control Assemblies:  Mount on modular plug-ins, arranged for easy maintenance. 
 
D. Surge Suppression:  Protect UPS system input elements, rectifier/battery charger, 

inverter, controls, and output components against voltage transients with surge 
suppressors listed in UL 1449, and tested according to IEEE C62.41, Category B. 

 
E. Power Assemblies:  Mount rectifier and inverter sections and static bypass 

transfer switch on modular plug-ins, arranged for easy maintenance. 
 
F. Design and fabricate internal supports for assemblies, subassemblies, 

components, supports, and fastenings for batteries to withstand static and 
anticipated seismic forces in any direction, with the minimum force value used 
being equal to the equipment weight. 

 
2.8 RECTIFIER/BATTERY CHARGER 
 

A. Capacity:  Adequate to supply the inverter during full output load conditions and 
simultaneously recharge the battery from fully discharged condition to 95 percent 
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of full charge within 10 times the rated discharge time for duration of supply 
under battery power at full load. 

 
B. Input Current Distortion:  Harmonic suppression, either by input harmonic 

filters or inherent in the rectifier/battery charger design, reduces total harmonic 
content of the current drawn from the input power source by the system to less 
than 10 percent for sources with X/R ratios from 2 to 30.  This applies for all UPS 
load currents from 0 to 100 percent of full load. 

 
C. Input Current Distortion:  Less than 32 percent THD at rated UPS load. (change 

to 10 percent THD)  
 

D. Rectifier Control Circuits:  Immune to frequency variations within the rated 
frequency range of the system.  Response time can be field adjusted for maximum 
compatibility with local generator-set power source. 

 
E. Battery float-charging conditions, in terms of voltage and charging current under 

normal operating conditions, are within battery manufacturer's written instructions 
for maximum battery life. 

 
F. Input Power Factor:  At least 0.85 lagging when supply voltage and current are at 

nominal rated values and UPS are supplying rated full load. 
 
 
2.9 BATTERY (Choose one type depending on installation application) 
 

A. Description:  Valve-regulated, recombinant, lead-calcium units, factory assembled 
in an isolated compartment of UPS cabinet, and complete with battery disconnect 
switch. 

 
B. Description:  Valve-regulated, recombinant, lead-calcium units, factory assembled 

in a separate cabinet that matches UPS cabinet in appearance.  Equip battery 
assembly with battery disconnect switch and arrange for drawout removal of the 
battery assembly from the cabinet for inspection and test. 

 
C. Description:  Lead-calcium, heavy-duty, industrial type in styrene acrylonitrile 

containers mounted on 3-tier, acid-resistant, painted steel racks arranged as 
indicated.  Assembly includes a battery disconnect switch, intercell connectors, a 
hydrometer syringe, and a thermometer with specific gravity-correction scales. 
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2.10 BATTERY-MONITORING SYSTEM 
 

A. Battery ground-fault detector initiates an alarm when resistance to ground of 
positive or negative bus of battery is less than 5000 ohms. 

 
B. Battery compartment smoke/high-temperature detector initiates an alarm when 

smoke or a temperature greater than 75 deg C occurs within the compartment. 
 

C. Automatically measure and electronically record individual cell voltage, 
impedance, and temperature, plus total battery voltage and ambient temperature.  
Measure parameters on a routine schedule selected by the operator.  Measure 
battery and cell voltages and time to the nearest second during battery-discharging 
events such as utility outages.  Monitoring system includes the following: 

 
1. Factory-wired sensing leads to cell and battery terminals and cell temperature 

sensors. 
2. Modem and connectors for data transmission via RS-232 link and external 

signal wiring to a computer.  External signal wiring and computer are not 
specified in this Section. 

3. Software designed to store and analyze battery data using an IBM-compatible 
computer, which is not specified in this Section.  Software reports individual cell and 
total battery performance trends and provides data for scheduling and prioritizing 
battery maintenance. 

 
D. Automatically measure and electronically record individual cell voltage, 

impedance, temperature, and electrolyte level, plus total battery voltage and 
ambient temperature.  Measure parameters on a routine schedule selected by the 
operator.  Measure battery and cell voltages and time to the nearest second during 
battery-discharging events such as utility outages.  Monitoring system includes 
the following: 

 
1. Modem for data transmission via RS-232 link and external signal wiring to a 

computer.  External signal wiring and computer are not specified in this 
Section. 

 
2. Software designed to store and analyze battery data using an IBM-compatible 

computer, which is not specified in this Section.  Software reports individual 
cell and total battery performance trends and provides data for scheduling and 
prioritizing battery maintenance. 
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2.11 INVERTER 
 

A. Description:  Pulse-width modulated, with sinusoidal output.  Include a bypass 
phase synchronization window to optimize compatibility with local generator-set 
power source. 

 
 
2.12 STATIC BYPASS TRANSFER SWITCH 
 

A. Switch Rating:  Continuous duty at rated full load.  Switch provides make-before-
break transfer.  A contactor or electrically operated circuit breaker in the inverter 
output provides electrical isolation. 

 
 
2.13 MAINTENANCE BYPASS/ISOLATION SWITCH 
 

A. Comply with NEMA PB 2 and UL 891. 
 

B. Switch Rating:  Continuous duty at rated full load of system. 
 

C. Mounting Provisions:  Locate inside one of the modular system cabinets, behind a 
lockable door. 

 
D. Mounting Provisions:  Separate wall- or floor-mounted unit as indicated. 

 
E. Key interlock requires unlocking maintenance bypass/isolation switch before 

switching from normal position with key that is released only when UPS are 
bypassed by static bypass transfer switch.  Lock is designed specifically for 
electrical component interlocking. 

 
 
2.14 OUTPUT DISTRIBUTION SECTION 
 

A. Panelboard:  Comply with Division 16 Section "Panelboards" for panelboards 
with circuit breakers and other features as indicated in a panelboard schedule.  
Match and align panelboard cabinet with other UPS cabinets. 

 
 
2.15 INDICATION AND CONTROL 
 

A. General:  Group displays, indications, and basic system controls on a common 
control panel on the front of UPS enclosure. 

 
B. Minimum displays, indicating devices, and controls include those in lists below.  

Provide sensors, transducers, terminals, relays, and wiring required to support 
listed items.  An audible signal sounds for alarms as well as the visual indication. 
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C. Indications:  Labeled LED display. 
 

D. Indications:  Plain-language messages on a liquid crystal or digital LED display. 
 

1. Quantitative Indications:  Include the following: 
 

a. Input voltage, each phase, line to line. 
b. Input current, each phase. 
c. Bypass input voltage, each phase, line to line. 
d. Bypass input frequency. 
e. System output voltage, each phase, line to line. 
f. System output current, each phase. 
g. System output frequency. 
h. DC bus voltage. 
i. Battery current and direction (charge/discharge). 
j. Elapsed time-discharging battery. 

 
2. Status Indications:  Include the following: 

 
a. Normal operation. 
b. Load on bypass. 
c. Load on battery. 
d. Inverter off. 
e. Alarm condition exists. 

 
3. Alarm Indications:  Include the following: 

 
a. Bypass AC input overvoltage or undervoltage. 
b. Bypass AC input overfrequency or underfrequency. 
c. Bypass AC input and inverter out of synchronization. 
d. Bypass AC input wrong-phase rotation. 
e. Bypass AC input single-phase condition. 
f. Bypass AC input filter fuse blown. 
g. Internal frequency standard in use. 
h. Battery system alarm. 
i. Control power failure. 
j. Fan failure. 
k. UPS overload. 
l. Battery-charging control faulty. 
m. Input overvoltage or undervoltage. 
n. Input transformer over temperature. 
o. Input circuit breaker tripped. 
p. Input wrong-phase rotation. 
q. Input single-phase condition. 
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r. Approaching end of battery operation. 
s. Battery undervoltage shutdown. 
t. Maximum battery voltage. 
u. Inverter fuse blown. 
v. Inverter transformer over temperature. 
w. Inverter over temperature. 
x. Static bypass transfer switch over temperature. 
y. Inverter power-supply fault. 
z. Inverter transistors out of saturation. 
aa. Identification of faulty inverter section/leg. 
ab. Inverter output overvoltage or undervoltage. 
ac. UPS overload shutdown. 
ad. Inverter current sensor fault. 
ae. Inverter output contactor open. 
af. Inverter current limit. 

 
4. Controls:  Include the following: 

 
a. Inverter on-off. 
b. UPS start. 
c. Battery test. 
d. Alarm silence/reset. 
e. Output-voltage adjustment. 

 
E. Analog Meters:  Accurate within 2 percent. 

 
F. Dry Form "C" Contacts:  Available for remote indication of the following 

conditions: 
 

1. UPS on battery. 
2. UPS on-line. 
3. UPS load on bypass. 
4. UPS in alarm condition. 

 
G. Remote Status and Alarm Panel:  Labeled LEDs indicate conditions listed 

above.  Audible signal indicates alarm conditions.  Silencing switch in face of 
panel silences signal without altering visual indication. 

 
1. Cabinet and Faceplate:  Surface- or flush-mounted to suit mounting conditions 

indicated. 
 
2.16 REMOTE UPS CONTROL AND MONITORING SYSTEM 
 

A. Description:  A remote microprocessor for the unit control panel to indicate 
alarms and to control as specified in "Indication and Control" Article above.  
Record power-line transients and provide analytical capability.  Include the items 
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described below, but do not include the remote computer or the connecting signal 
wiring.  System includes the following: 

 
1. Modem and connectors for data transmission via RS-232 link and external 

signal wiring to a computer.  External signal wiring and computer are not 
specified in this Section. 

 
2. Software designed to secure control and monitoring of UPS functions and to 

provide on-screen explanations, interpretations, and action guidance for 
monitoring indications.  Include on-screen descriptions of control functions 
and instructions for their use.  Permit storage and analysis of power-line 
transient records.  Design for an IBM-compatible computer, which is not 
specified in this Section. 

 
 
2.17 MECHANICAL FEATURES 
 

A. Enclosures:  NEMA 250, Type 1. 
 

B. Ventilation:  Redundant fans or blowers draw in ambient air near the bottom of 
the cabinet and discharge it near the top rear. 

 
 
2.18 SOURCE QUALITY CONTROL 
 

A. Factory test complete UPS, including battery, before shipment.  Include the 
following tests: 

 
1. Functional test and demonstration of all functions, controls, indicators, sensors, 

and protective devices. 
2. Full-load test. 
3. Transient-load response test. 
4. Overload test. 
5. Power failure test. 
6. Efficiency test at 50, 75, and 100 percent loads. 

 
B. Observation of Test:  Give 14 days advance notice of tests and opportunity for 

Government's representative to observe tests. 
 
C. Report test results.  Include the following data: 
 

1. Description of input source and output loads to be used.  Describe actions 
required to simulate source load variation and various operating conditions 
and malfunctions. 
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2. List of indications, parameter values, and system responses considered 
satisfactory for each test action.  Include tabulation of actual observations 
during test. 

3. List of instruments and equipment required to duplicate factory tests in the 
field for those tests required to be repeated there. 

 
 
PART 3 - EXECUTION 
 
3.1 INSTALLATION 
 

A. Install system components on 4-inch- (100-mm-) high concrete housekeeping 
bases.  Cast-in-place concrete, reinforcing, and formwork are specified in 
Division 3. 

 
B. Maintain minimum workspace at equipment according to manufacturer's written 

instructions and NFPA 70. 
 

C. Connections:  Interconnect system components.  Make connections to supply and 
load circuits according to manufacturer's wiring diagrams, unless otherwise 
indicated. 

 
 
3.2 IDENTIFICATION 
 

A. Identify components according to Division 16 Section "Electrical Identification." 
 

1. Identify each battery cell individually. 
 
 
3.3 FIELD QUALITY CONTROL 
 

A. Manufacturer's Field Service:  Supervision of unit installation, connections, tests, 
and adjustments by a factory-authorized service representative.  Report results in 
writing. 

 
B. Manufacturer's Field Service:  Supervision of unit installation, connections, 

pretests, and adjustments by a factory-authorized service representative.  Report 
results in writing. 

 
C. Supervised Adjusting and Pretesting:  Under supervision of a factory-authorized 

service representative, pretest system functions, operations, and protective 
features.  Adjust to ensure operation complies with specifications.  Load the 
system using a variable-load bank simulating kVA, kW, and power factor of loads 
for which unit is rated. 
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D. Tests:  Perform tests listed below by an independent testing agency meeting the 
qualifications specified in the "Quality Assurance" Article.  Perform tests 
according to the manufacturer's written instructions.  Load the system using a 
variable-load bank to simulate kVA, kW, and power factor of loads for the unit's 
rating.  Use instruments calibrated, within the previous 6 months, according to 
NIST standards. 

 
1. Simulate malfunctions to verify protective device operation. 
2. Test duration of supply on emergency, low-battery voltage shutdown, and 

transfers and restoration due to normal source failure. 
3. Test harmonic content of input and output current less than 25, 50, and 100 

percent of rated loads. 
4. Test output voltage under specified transient-load conditions. 
5. Test efficiency at 50, 75, and 100 percent rated loads. 
6. Test remote status and alarm panel functions. 
7. Test battery-monitoring system functions. 
 

E. Retest:  Correct deficiencies and retest until specified requirements are met. 
 
 
3.4 CLEANING 
 

A. On completion of installation, inspect system components.  Remove paint 
splatters and other spots, dirt, and debris.  Repair scratches and mars of finish to 
match original finish.  Clean components internally using methods and materials 
recommended by manufacturer. 

 
 
3.5 DEMONSTRATION 
 

A. Engage a factory-authorized service representative to train Government's 
maintenance personnel as specified below: 

 
1. Train Government's maintenance personnel on procedures and schedules 

related to startup and shutdown, troubleshooting, servicing, and preventive 
maintenance. 

2. Review data in the operation and maintenance manuals.  Refer to Division 1 
Section "Contract Closeout."     

3. Review data in the operation and maintenance manuals.  Refer to Division 1 
Section "Operation and Maintenance Data." 

4. Schedule training with Government, through COR, with at least 7 days 
advance notice. 
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3.6 COMMISSIONING 
 

A. Battery Equalization:  Equalize charging of battery cells according to 
manufacturer's written instructions.  Record individual cell voltages. 
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